Diesel spills under stilted buildings in Canadian Arctic villages: what is the best remediation method?

  • Vincent Taillard Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Université du Québec, Québec, Canada
  • Richard Martel Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Université du Québec, Québec, Canada
  • Louis-César Pasquier Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Université du Québec, Québec, Canada
  • Jean-François Blais Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Université du Québec, Québec, Canada
  • Véronique Gilbert Environment and Land, Renewable Resources, Kativik Regional Government, Kuujjuaq, Canada
  • Guy Mercier Centre Eau Terre Environnement, Institut National de la Recherche Scientifique, Université du Québec, Québec, Canada
Keywords: In situ chemical oxidation, ISCO, Nunavik, sodium persulfate, permafrost, hydrocarbon contamination

Abstract

In remote communities in the Canadian Arctic, petroleum hydrocarbons supply most household energy needs. Their transportation and use frequently incurs small volume spills in populated areas. The remediation method that is currently used when such spills affect the soil under northern villages’ stilted buildings is expensive and not well suited to local conditions. Here, we review local constraints and environmental considerations and select the best remediation technology for this context: in situ chemical oxidation, involving sodium persulfate (SPS) alkali activated with calcium peroxide (CP). Activated SPS presents a good reactivity and amenability to compounds found in diesel. Its high persistence allows a gradual contaminant degradation, regulating heat release from exothermic reactions associated with the oxidative reactions. CP provides suitable alkali activation, acts itself as an oxidant and provides O2 into the subsurface, which may favour a final smoothing bioremediation step. The SPS properties and the contaminant amenability mean that diesel is removed relatively efficiently, while the subsurface temperature increase is limited, thus preserving the residual permafrost. The solid form of the chemicals offers safe and economic transportation and operation, along with versatility regarding the preparation and distribution of the oxidizing solution into the subsurface. Finally, the oxidation by-products resulting from this method are not considered to be environmentally problematic in the context of the application, and they can be partly confined during the treatment.

Downloads

Download data is not yet available.

References


Allard M. & Lemay M. 2012. Nunavik and Nunatsiavut: from science to policy. An integrated regional impact study (IRIS) of climate change and modernization. Québec: ArcticNet Inc.


Anisimov O.A., Vaughan D.G., Callaghan T.V., Furgal C., Marchant H., Prowse T.D., Vilhjálmsson H. & Walsh J.E. 2007. Polar regions (Arctic and Antarctic). In M.L. Parry et al. (eds.): Climate change 2007. Impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Pp. 653–685. Cambridge: Cambridge University Press.


Anderson R.S. & Anderson S.P. 2010. Geomorphology. Cambridge: Cambridge University Press.


Anthony K.W., Daanen R., Anthony P., Von Deimling T.S., Ping C.L., Chanton J.P. & Grosse G. 2016. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nature Geoscience 9, 679–682, doi: 10.1038/NGEO2795.


Aubé-Michaud S., Allard M. & l’Hérault M. 2017. Identification des risques actuels et appréhendés sur le territoire des communautés du Nunavik en fonction des changements climatiques—phase 1. (Identification of current and apprehended risks on the territory of Nunavik communities in relation to climate change—phase 1.) Québec: Université Laval.


Balks M.R., Paetzold R.F., Kimble J.M., Aislabie J. & Campbell L.B. 2002. Effects of hydrocarbon spills on the temperature and moisture regimes of cryosols in the Ross Sea region. Antarctic Science 14, 319–326, doi: 10.1017/S0954102002000135.


Bjella K.L., Robyn A.B, Wagner A.J., Barker S.J., Doherty K.L., Foley R.M., Jones C.A., Hiemstra A.G. & Saari S.P. 2018. Comprehensive approach for monitoring and remediating petroleum-derived contaminants in the Arctic: case study of the former NARL site near Utqiaġvik, Alaska (formerly Barrow). Fort Wainwright, AK: US Army Engineer Research and Development Center.


Block P.A., Brown R.A. & Robinson D. 2004. novel activation technologies for sodium persulfate in situ chemical oxidation. Paper presented at the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, 24–27 May, Monterey, CA, USA.


Bogan B.W., Trbovic V. & Paterek J.R. 2003. Inclusion of vegetable oils in Fenton’s chemistry for remediation of PAH-contaminated soils. Chemosphere 50, 12–21, doi: 10.1016/S0045-6535(02)00490-3.


Brown J., Hinkel K.M. & Nelson F.E. 2000. The Circumpolar Active Layer Monitoring (CALM) program: research designs and initial results. Polar Geography 24, 163–258, doi: 10.1080/10889370009377698.


Camenzuli D. & Freidman B.L. 2015. On-site and in situ remediation technologies applicable to petroleum hydrocarbon contaminated sites in the Antarctic and Arctic. Polar Research 34, 24–492, doi:10.3402/polar.v34.24492.


Carbonneau A.-S., L’Hérault E., Aubé-Michaud S., Taillefer M., Ducharme M.-A., Pelletier M. & Allard M. 2015. Production de cartes des caractéristiques du pergélisol afin de guider le développement de l’environnement bâti pour huit communautés du Nunavik. (Production of maps of permafrost characteristics to guide the development of the built environment for eight Nunavik communities.) Québec: Université Laval.


Cassidy D.P. & Irvine R.L. 1999. Use of calcium peroxide to provide oxygen for contaminant biodegradation in saturated soil. Journal of Hazardous Materials 69, 25–39, doi: 10.1016/S0304-3894(99)00051-5.


Charron I. 2015. Élaboration du portrait climatique régional du Nunavik. (Development of a regional climate portrait of Nunavik.) Montréal: Ouranos.


Chuvilin E., Sokolova Naletova N., Miklyaeva E.C., Kozlova E.V. & Instanes A. 2001. Factors affecting spreadability and transportation of oil in regions of frozen ground. Polar Record 37, 229–238, doi: 10.1017/S003224740002725X.


Chuvilin E., Yershov E., Naletova N. & Miklyaeva E. 2000. The use of permafrost for the storage of oil and oil products and the burial of toxic industrial wastes in the Arctic. Polar Record 36, 211–214, doi: 10.1017/S0032247400016478.


Corbin J.F. 2008. Mechanisms of base, mineral and soil activation persulfate for groundwater treatment. PhD thesis, Department of Environmental and Natural Resource Science, Washington State University.


Crimi M.L. & Taylor J. 2007. Experimental evaluation of catalyzed hydrogen peroxide and sodium persulfate for destruction of BTEX contaminants. Soil and Sediment Contamination 16, 29–45, doi: 10.1080/15320380601077792.


Cronk G. & Cartwright R. 2006. Optimization of a chemical oxidation treatment process for groundwater remediation. Paper presented at the Fifth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, 22–25 May, Monterey, CA, USA.


Dermont G., Bergeron M., Mercier G. & Richer-Lafleche M. 2008. Soil washing for metal removal: a review of physical/chemical technologies and field applications. Journal of Hazardous Materials 152, 1–31, doi: 10.1016/j.jhazmat.2007.10.043.


De Sousa C. 2008. Brownfields redevelopment and the quest for sustainability. Amsterdam: Elsevier Sicence.


Dredge L.A., Kerr D.E. & Wolfe S.A. 1999. Surficial materials and related ground ice conditions, Slave Province, N.W.T., Canada. Canadian Journal of Earth Science 36, 1227–1238, doi: 10.1139/e98-087.


Filler D.M., Reynolds C.M., Snape I., Daugulis A.J., Barnes D.L. & Williams P.J. 2006. Advances in engineered remediation for use in the Arctic and Antarctic. Polar Record 42, 111–120, doi: 10.1017/S003224740500505X.


Filler D.M., Snape I. & Barnes D.L. (eds.) 2008. Bioremediation of petroleum hydrocarbons in cold regions. Cambridge: Cambridge University Press.


FRTR (Federal Remediation Technologies Roundtable) 2020. Technology screening matrix. Accessed on the internet at https://frtr.gov/matrix/default.cfm on 5 August 2020.


Fulton R.J. 1995. Surficial materials of Canada. Geological Survey of Canada. “A” Series Map 1880A. Québec: Canadian Geological Comission.


Furnam O.S., Teel A.L. & Watts R.J. 2010. Mechanism of base activation of persulfate. Environmental Science and Technology 44, 6423–6428, doi: 10.1021/es1013714.


Government of Québec 2017. Housing construction in Nunavik, guide to good practice. Québec: Société d’Habitation du Québec.


Haavisto R., Phili-Shivola K., Harjanne A. & Perrels A. 2016. Socio-economic scenarios for the Eurasian Arctic by 2040. Helsinki: Finnish Meteorological Institute.


Harrison J.C., St-Onge M.R., Petrov O.V., Strelnikov S.I., Lopatin B.G., Wilson F.H., Tella S., Paul D., Lynds T., Shokalsky S.P., Hults C.K., Bergman S., Jepsen H.F. & Solli A. 2011. Geological Survey of Canada. “A” Series Map 2159A. Québec: Canadian Geological Comission.


Hayon E., Treinin A. & Wilf J. 1972. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite–bisulfite–pyrosulfite systems. The SO2, SO3, SO4, and SO5 radicals. Journal of the American Chemical Society 94, 47–57, doi: 10.1021/ja00756a009.


Heitkamp M.A. 1997. Effects of oxygen-releasing materials on aerobic bacterial degradation processes. Bioremediation Journal 1, 105–114, 10.1080/10889869709351325.


L’Hérault E., Allard M., Lemay M., Barrette C. & Carbonneau A.-S. 2014. Investigations géotechniques, caractérisation du pergélisol et stratégie d’adaptation dans un contexte de changements climatiques pour la route d’accès et l’aéroport de Kangiqsualujjuaq, Nunavik. (Geotechnical investigations, permafrost characterization and adaptation strategy in a climate change context for the Kangiqsualujjuaq access road and airport, Nunavik.) Québec: Université Laval.


House D.D. 1962. Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews 62, 185–203, doi: 10.1021/cr60217a001.


IPA (International Permafrost Association) 2020. What is permafrost. Accessed on the internet at https://www.permafrost.org/what-is-permafrost// on 4 December 2020.


Khalid S., Sahid M., Niazi N.K., Murtaza B., Bibi I. & Dumat C. 2017. A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration 182, 247–268, doi: 10.1016/j.gexplo.2016.11.021.


Kolthoff I.M., Medalia A.I. & Raaen H.P. 1951. The reaction between ferrous iron and peroxides: IV. Reaction with potassium persulfate. Journal of American Chemical Society 73, 1733–1739, doi: 10.1021/ja01148a089.


Kuhlman M.L. & Greenfield T.M. 1999. Simplified soil washing processes for a variety of soils. Journal of Hazardous Materials 66, 31–45, doi: 10.1016/S0304-3894(98)00212-X.


Laperche V., Dictor M.C., Clozel-Leloup B. & Baranger P. 2004. Guide méthodologique du plomb appliqué à la gestion des sites et des sols pollués. (Lead methodological guide applied to the management of polluted sites and soils.) Orléans, France: Bureau de Recherches Géologiques et Minières.


Lapointe M.-C., Martel R. & Cassidy D.P. 2020. RDX degradation by chemical oxidation using calcium peroxide in bench scale sludge system. Environmental Research 188, article no. 109836, doi: 10.1016/j.envres.2020.109836.


Lee J., Von Gluten U. & Kim J.-H. 2020. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environmental Science & Technology 54, 3064–3081, doi: 10.1021/acs.est.9b07082.


Lehr J.H. 2004. Wiley’s remediation technologies handbook: major contaminant chemicals and chemical groups. Cambridge: Cambridge University Press.


Lewis M.C., Reynolds C.M. & Leigh M.B. 2013. Long-term effects of nutrient addition and phytoremediation on diesel and crude oil contaminated soils in Subarctic Alaska. Cold Regions Science and Technology 96, 129–137, doi: 10.1016/j.coldregions.2013.08.011.


Liang C., Bruell C.J., Marley M.C. & Sperry K.L. 2004. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple. Chemosphere 55, 1213–1223, doi: 10.1016/j.chemosphere.2004.01.029.


Liang C. & Guo Y. 2012. Remediation of diesel-contaminated soils using persulfate under alkaline conditions. Water Air Soil Pollution 223, 4605–4614, doi: 10.1007/s11270-012-1221-6.


Liang C., Huang C.F., Mohanty N. & Kurakavla R.M. 2008. A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere 73, 1540–1543, doi: 10.1016/j.chemosphere.2008.08.043.


Lim M.W., Lau E.V. & Poh P.E. 2016. A comprehensive guide of remediation technologies for oil contaminated soil—present works and future directions. Marine Pollution Bulletin 109, 14–45, doi: 10.1016/j.marpolbul.2016.04.023.


Lominchar M.A., Santos A., Miguel E. & Romero A. 2018. Remediation of aged diesel contaminated soil by alkaline activated persulfate. Science of the Total Environment 622, 41–48, doi: 10.1016/j.scitotenv.2017.11.263.


Lu S., Zhang X. & Xue Y. 2017. Application of calcium peroxide in water and soil treatment: a review. Journal of Hazardous Material 337, 163–177, doi: 10.1016/j.jhazmat.2017.04.064.


McBean G., Alekseev G., Deliang F., Eirik F., Groisman P., King R., Melling R. & Whitfield P. 2005. Arctic climate: past and present. In C. Simon et al. (eds.): Arctic climate impact assessment. Pp. 21–60. Cambridge: Cambridge University Press.


Northup A. & Cassidy D. 2008. Calcium peroxide (CaO2) for use in modified Fenton chemistry. Journal of Hazardous Materials 152, 1164–70, doi: 10.1016/j.jhazmat.2007.07.096.


NSIDC (National Snow and Ice Data Center) 2020. Frozen ground and permafrost. Accessed on the internet at https://nsidc.org/learn/parts-cryosphere/frozen-ground-permafrost on 17 December 2020.


Poland J.S., Riddle M.J. & Zeeb B.A. 2003. Contaminants in the Arctic and the Antarctic: a comparison of sources, impacts, and remediation options. Polar Record 39, 369–383, doi: 10.1017/S0032247403002985.


Ranc B. 2017. Oxydation chimique in situ de la zone non saturée de sols contaminés par du goudron de houille: du laboratoire au terrain. (In situ chemical oxidation of the unsaturated zone of coal tar contaminated soils: from laboratory to field.) PhD thesis, University of Lorraine, France.


Rastogi A., Al-Abed S. & Dionysiou D. 2009. Sulfate radical-based ferrous-peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Applied Catalalysis B: Environmental 85, 171–179, doi: 10.1016/j.apcatb.2008.07.010.


Rayu S., Karpouzas D.G. & Singh B.K. 2012. Emerging technologies in bioremediation: constraints and opportunities. Biodegradation 23, 917–926, doi: 10.1007/s10532-012-9576-3.


Ritter D.F., Kochel R.C. & Miller J.R. 2002. Process geomorphology. Boston, MA: McGraw-Hill.


Shakhova N., Semiletov I., Sergienko V., Lobkovsky L., Yusupov V., Salyuk A., Salomatin A., Chernykh D., Kosmach D., Panteleev G., Nicolsky D., Samarkin V., Joye S., Charkin A., Dudarev O., Meluzov A. & Gustafsson O. 2015. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Philosophical Transactions of the Royal Society A 13, article no. 20140451, doi: 10.1098/rsta.2014.0451.


Siegrist R.L., Crimi M. & Simpkin T.J. (eds.) 2011. In situ chemical oxidation for groundwater remediation. New York: Springer.


Siliciano S.D., Shafer A.N., Forgeron M.A.M. & Snape I. 2008. Hydrocarbon contamination increases the liquid water content of frozen Antarctic soil. Environmental Science and Technology 42, 8324–8329, doi: 10.1021/es801731z.


Smith R. & Vaughan S. 2017. Cost of pollution: contaminated sites. International Institute of Sustainable Development. Accessed on the internet at https://www.iisd.org/articles/cost-pollution-contaminated-sites on 10 March 2020.


Sra K.S. 2010. Persulfate persistence and treatability of gasoline compounds. PhD thesis, University of Waterloo, Canada.


Sra K.S., Thomson N.R. & Barker J.F. 2010. Persistence of persulfate in uncontaminated aquifer materials. Environmental Science and Technology 44, 3098–3104, doi : 10.1021/es903480k.


Story R. & Yalkin T. 2014. Federal contaminated sites cost. Ottawa: Office of the Parliamentary Budget Officer.


Taillard V. & Baïlon-Poujol G. 2020. Traitement de sols contaminés au Nunavik, les défis de la recherche d’une solution adaptée. (Treatment of contaminated soils in Nunavik, the challenges of finding a suitable solution.) Vecteur Environnement 53, 34–35.


Torrance K. 2016. Migration of contaminants in permafrost active layer; new insights from on-going studies at the former Naval Arctic Research Laboratory, Barrow, Alaska. Paper presented at the 59th Annual Meeting of The Association of Environmental & Engineering Geologists, 21–23 September, Kona, HI.


USEPA (United States Environmental Protection Agency) 1993. Remediation technologies screening matrix and reference guide. Chicago: United States Environmental Protection Agency.


USEPA (United States Environmental Protection Agency) 2006a. In situ treatment technologies for contaminated soil. Chicago: United States Environmental Protection Agency.


USEPA (United States Environmental Protection Agency) 2006b. In situ chemical Oxidation. Chicago: United States Environmental Protection Agency.


Van Hamme J.D., Singh A. & Ward O.P. 2003. Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews 67, 503–549, doi: 10.1128/MMBR.67.4.503-549.2003.


Wagner A.M. & Barker A.J. 2019. Distribution of polycyclic aromatic hydrocarbons (PAHs) from legacy spills at an Alaskan Arctic site underlain by permafrost. Cold Regions Science and Technology 158, 154–165, doi: 10.1016/j.coldregions.2018.11.012.


Wang H., Zhao Y., Li T., Chen Z., Wang Y. & Qin C. 2016. Properties of calcium peroxide for release of hydrogen peroxide and oxygen: a kinetics study. Chemical Engineering Journal 303, 450–457, doi: 10.1016/j.cej.2016.05.123.


Watts R.J. 2011. Enhanced reactant-contaminant contact through the use of persulfate in situ chemical oxidation (ISCO). Pullman: Washington State University.


Watts R.J. & Teel A.L. 2005. Chemistry of modified Fenton’s reagent (catalyzed H2O2 propagations CHP) for in situ soil and groundwater remediation. Journal of Environmental Engineering 13, 612–622, doi: 10.1061/(ASCE)0733-9372(2005)131:4(612).


Watts R.J. & Teel A.L. 2006. Treatment of contaminated soils and groundwater using ISCO. Practice Periodical of Hazardous Toxic and Radioactive Waste Management 10, 2–9, doi: 10.1061/(ASCE)1090-025X(2006)10:1(2).


Wu H., Sun L., Wang H. & Wang X. 2017. In situ sodium persulfate/calcium peroxide oxidation in remediation of TPH-contaminated soil in 3D sand box. Environmental Technology 39, 91–101, doi: 10.1080/09593330.2107.1296029.


Xiong T., Austruy A., Pierart A., Shahid M., Schreck E., Mombo S. & Dumat C. 2016. Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. Journal of Environmental Science 46, 16–27, doi: 10.1016/j.jes.2015.08.029.


Yang S.Z., Jin H.J., Wei Z., He R.X., Ji Y.J., Li X.M. & Yu S.P. 2009. Bioremediation of oil spills in cold environments: a review. Pedosphere 19, 371–381, doi: 10.1016/S1002-0160(09)60128-4.


Zhao D., Lia X., Yan X., Huling S.G., Chai T. & Tao H. 2013. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. Journal of Hazardous Materials 254–255, 228–235, doi: 10.1016/j.jhazmat.2013.03.056.
Published
2022-12-23
How to Cite
Taillard V., Martel R., Pasquier L.-C., Blais J.-F., Gilbert V., & Mercier G. (2022). Diesel spills under stilted buildings in Canadian Arctic villages: what is the best remediation method?. Polar Research, 41. https://doi.org/10.33265/polar.v41.7724
Section
Research Articles