Liverworts frequently form mycothalli on Spitsbergen in the High Arctic

  • Kevin K. Newsham British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
  • William P. Goodall-Copestake British Antarctic Survey, Natural Environment Research Council, Cambridge, UK; and Scottish Association for Marine Science, Oban, Argyll, Scotland, UK
Keywords: Edaphic factors, Jungermanniidae, leafy liverworts, Serendipita, Svalbard, symbiosis


Mycothalli, symbioses between liverworts and soil fungi, have not previously been recorded in the Arctic. Here, 13 species of leafy liverwort from west Spitsbergen in the High Arctic are examined for the symbiosis using epifluorescence microscopy and sequencing of fungal ribosomal (r)RNA genes amplified from plant tissues. Microscopy showed that intracellular hyphal coils, key indicators of the symbiosis, were frequent (>40% stem length colonized) in nine species of liverwort in the families Anastrophyllaceae, Lophoziaceae, Cephaloziellaceae, Cephaloziaceae and Scapaniaceae, with hyphae occurring frequently (>40% cells occupied) in the rhizoids of 10 species in the same families. Dark septate hyphae, apparently formed by ascomycetes, were frequent on the stems of members of the Anastrophyllaceae, Cephaloziellaceae and Cephaloziaceae, and typically those growing on acidic mine tailings. Sequencing of fungal rRNA genes showed the presence of nine distinct groups (based on a 3% cut-off for ITS sequence divergence) of the basidiomycete Serendipita in the Anastrophyllaceae and Lophoziaceae, with ordinations and correlative analyses showing the presence of the genus to be positively associated with the frequency of hyphal coils, the occurrence of which was positively associated with edaphic factors (soil δ15N value and concentrations of moisture, nitrogen, carbon and organic matter). We propose that the frequency of mycothalli in leafy liverworts on west Spitsbergen, which is an order of magnitude higher than at lower latitudes, may arise from benefits conferred by mycobionts on their hosts in the harsh environment of the High Arctic.


Download data is not yet available.


Acuña-Rodríguez I.S., Newsham K.K., Gundel P.E., Torres-Díaz C. & Molina-Montenegro M.A. 2020. Functional roles of microbial symbionts in plant cold tolerance. Ecology Letters 23, 1034–1048, doi: 10.1111/ele.13502.

Arnell S. & Mårtensson O. 1959. A contribution to the knowledge of the bryophyte flora of w. Spitsbergen, and Kongsfjorden (King’s Bay, 79 °N) in particular. Arkiv för Botanik 4, 104–164.

Asplund J. & Wardle D.A. 2017. How lichens impact on terrestrial community and ecosystem properties. Biological Reviews 92, 1720–1738, doi: 10.1111/brv.12305.

Beck P.S.A., Kalmbach E., Joly D., Stien A. & Nilsen L. 2005. Modelling local distribution of an Arctic dwarf shrub indicates an important role for remote sensing of snow cover. Remote Sensing of the Environment 98, 110–121, doi: 10.1016/j.rse.2005.07.002.

Bidartondo M.I. & Duckett J.G. 2010. Conservative ecological and evolutionary patterns in liverwort-fungal symbioses. Proceedings of the Royal Society B 277, 485–492, doi: 10.1098/rspb.2009.1458.

Blaalid R., Kumar S., Nilsson R.H., Abarenkov K., Kirk P.M. & Kauserud H. 2013. ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources 13, doi: 10.1111/1755-0998.12065.

Boddy E., Roberts P., Hill P.W., Farrar J. & Jones D.L. 2008. Turnover of low molecular weight dissolved organic C (DOC) and microbial C exhibit different temperature sensitivities in Arctic tundra soils. Soil Biology and Biochemistry 40, 1557–1566, doi: 10.1016/j.soilbio.2008.01.030.

Boullard B. 1988. Observations on the coevolution of fungi with hepatics. In K.A. Pyrozynski & D.L. Hawksworth (eds.): Coevolution of fungi with plants and animals. Pp. 107–124. London: Academic Press.

Damsholt K. 2007. Liverworts of the Reindeer Preserve, Northwest Territories, Canada. Lindbergia 31, 88–100.

Damsholt K. 2013. The liverworts of Greenland. Lund: Nordic Bryological Society.

Davey M.L. & Currah R.S. 2007. A new species of Cladophialophora (hyphomycetes) from boreal and montane bryophytes. Mycological Research 111, 106–116, doi: 10.1016/j.mycres.2006.10.004.

Davis E.C. & Shaw A.J. 2008. Biogeographic and phylogenetic patterns in diversity of liverwort-associated endophytes. American Journal of Botany 95, 914–924, doi: 10.3732/ajb.2006463

Deslippe J.R., Hartmann M., Simard S.W. & Mohn W.W. 2012. Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiology Ecology 82, 303–315, doi: 10.1111/j.1574-6941.2012.01350.x

Duckett J.G. & Read D.J. 1995. Ericoid mycorrhizas and rhizoid-ascomycete associations in liverworts share the same mycobiont—isolation of the partners and resynthesis of the associations in vitro. New Phytologist 129, 439–477, doi: 10.1111/j.1469-8137.1995.tb04315.x.

Duckett J.G., Russell J. & Ligrone R. 2006. Basidiomycetous endophytes in jungermannialean (leafy) liverworts have novel cytology and species-specific host ranges: a cytological and experimental study. Canadian Journal of Botany 84, 1075–1093, doi: 10.1139/b06-073.

Forrest L.L., Davis E.C., Long D.G., Crandall-Stotler, B., Clark A. & Hollingsworth M.L. 2006. Unraveling the evolutionary history of the liverworts (Marchantiophyta): multiple taxa, genomes and analyses. The Bryologist 109, 303–334.

Frisvoll A.A. & Elvebakk A. 1996. Part 2. Bryophytes. In A. Elvebakk & P. Prestrud (eds): A catalogue of Svalbard plants, fungi, algae and cyanobacteria. Norsk Polarinstitutt Skrifter 198. Pp. 57‒172. Oslo: Norwegian Polar Institute.

Gardes M. & Bruns T.D. 1993. ITS primers with enhanced specificity for Basidiomycetes—application to the identification of mycorrhizae and rusts. Molecular Ecology 2, 113–118, doi: 10.1111/j.1365-294X.1993.tb00005.x.

Hanssen-Bauer I., Førland E.J., Hisdal H., Mayer S., Sandø A.B. & Sorteberg A. (eds.) 2019. Climate in Svalbard 2100—a knowledge base for climate adaptation. NCCS Report 1/2019. Doi: 10.13140/RG.2.2.10183.75687. Oslo: Norwegian Centre for Climate Services.

Harley J.L. & Waid J.S. 1955. A method of studying active mycelia on living roots and other surfaces in the soil. Transactions of the British Mycological Society 38, 104–118, doi: 10.1016/S0007-1536(55)80022-8.

Hassel K., Zechmeister H. & Prestø T. 2014. Mosses (Bryophyta) and liverworts (Marchantiophyta) of the Zackenberg Valley, northeast Greenland. Lindbergia 37, 66–84, doi: 10.25227/linbg.01051.

Konstantinova N.A. 2000. Analiz arealov pečenočnikov severa Golarktiki. (Distribution patterns of the north Holarctic hepatics.) Arctoa 9, 29–94, doi: 10.15298/arctoa.09.06. (In Russian with English abstract.)

Kottke I., Beiter A., Weiß M., Haug I., Oberwinkler F. & Nebel M. 2003. Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycological Research 107, 957–968, doi: 10.1017/S0953756203008141.

Kowal J., Pressel S., Duckett J.G., Bidartondo M.I. & Field K.J. 2018. From rhizoids to roots? Experimental evidence of mutualism between liverworts and ascomycete fungi. Annals of Botany 121, doi: 10.1093/aob/mcx126.

McGonigle T.P., Miller M.H., Evans D.G., Fairchild G.L. & Swann J.A. 1990. A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytologist 155, 495–501, doi: 10.1111/j.1469-8137.1990.tb00476.x.

Němec B. 1904. Die mykorrhiza von Calypogeia trichomanes. (The mycorrhiza of Calypogeia trichomanes.) Beitrage Botanisches Zentralblatte 16, 253–268.

Newsham K.K. & Bridge P.D. 2010. Sebacinales are associates of the leafy liverwort Lophozia excisa in the southern maritime Antarctic. Mycorrhiza 20, 307–313, doi: 10.1007/s00572-009-0283-9.

Newsham K.K., Goodall-Copestake W.P., Ochyra R. & Váňa, J. 2014. Mycothalli of the hepatic Barbilophozia hatcheri in Antarctica: distribution and identities of mycobionts. Fungal Ecology 11, 91–99, doi: 10.1016/j.funeco.2014.05.001.

Newsham K.K., Upson R. & Read D.J. 2009. Mycorrhizas and dark septate endophytes in polar regions. Fungal Ecology 2, 10–20, doi: 10.1016/j.funeco.2008.10.005.

Nilsson R.H., Tedersoo L., Ryberg M., Kristiansson E., Hartmann M., Unterseher, M., Porter T.M., Bengtsson-Palme J., Walker D.A., de Sousa F., Gamper H.A., Larsson E., Larsson K.-H., Kõljalg U., Edgar R.C. & Abarenkov K. 2015. A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts. Microbes and Environment 30, 145–150, doi: 10.1264/jsme2.me14121.

Pressel S., Bidartondo M.I., Ligrone R. & Duckett J.G. 2010. Fungal symbioses in bryophytes: new insights in the twenty first century. Phytotaxa 9, 238–253, doi: 10.11646/phytotaxa.9.1.13.

Read D.J. 1991. Mycorrhizas in ecosystems. Experientia 47, 376–391, doi: 10.1007/BF01972080.

Read D.J., Duckett J.G., Francis R., Ligrone R. & Russell A. 2000. Symbiotic fungal associations in ‘lower’ land plants. Philosophical Transactions of the Royal Society of London B 355, 815–831, doi: 10.1098/rstb.2000.0617.

Rimington W.R., Duckett J.G., Field K.J., Bidartondo M.I. & Pressel S. 2020. The distribution and evolution of fungal symbioses in ancient lineages of land plants. Mycorrhiza 30, 23–49, doi: 10.1007/s00572-020-00938-y.

Rimington W.R., Pressel S., Duckett J.G., Field K.J. & Bidartondo M.I. 2019. Evolution and networks in ancient and widespread symbioses between Mucoromycotina and liverworts. Mycorrhiza 29, 551–565, doi: 10.1007/s00572-019-00918-x.

Söderström L., Hagborg A., von Konrat M., Bartholomew-Began S., Bell D., Briscoe L., Brown E., Cargill D.C., Costa D.P., Crandall-Stotler B.J., Cooper E.D., Dauphin G., Engel J.J., Feldberg K., Glenny D., Gradstein S.R., He X., Heinrichs J., Hentschel J., Ilkiu-Borges A.L., Katagiri T., Konstantinova N.A., Larraín J., Long D.G., Nebel M., Pócs T., Felisa Puche F., Reiner-Drehwald E., Renner M.A.M., Sass-Gyarmati A., Schäfer-Verwimp A., Moragues J.G.S., Stotler R.E., Sukkharak P., Thiers B.M., Uribe J., Váňa J., Villarreal J.C., Wigginton M., Zhang L. & Zhu R.-L. 2016. World checklist of hornworts and liverworts. PhytoKeys 59, 1–821, doi: 10.3897/phytokeys.59.6261.

Stotler R.E. & Crandall-Stotler, B. 2017. A synopsis of the liverwort flora of North America north of Mexico. Annals of the Missouri Botanical Garden 102, 574–709, doi: 10.3417/2016027.

Upson R., Read D.J. & Newsham K.K. 2007. Widespread association between the ericoid mycorrhizal fungus Rhizoscyphus ericae and a leafy liverwort in the maritime and sub-Antarctic. New Phytologist 176, 460–471, doi: 10.1111/j.1469-8137.2007.02178.x.

Warcup J.H. 1988. Mycorrhizal associations of isolates of Sebacina vermifera. New Phytologist 110, 227‒231, doi: 10.1111/j.1469-8137.1988.tb00256.x.

Weiß M., Sýkorová Z., Garnica S., Riess K., Martos F., Krause C., Oberwinkler F., Bauer R. & Redecker D. 2011. Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS One 6, e16793, doi: 10.1371/journal.pone.0016793.

Weiß M., Waller F., Zuccaro A. & Selosse M.-A. 2016. Sebacinales—one thousand and one interactions with land plants. New Phytologist 211, 20–40,

White T.J., Bruns T.D., Lee S.B. & Taylor J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M.A. Inniset al. (eds): PCR protocols: a guide to methods and applications. Pp. 315–321. Berkeley, CA: Academic Press.

Wietrzyk-Pełka P., Cykowska-Marzencka B., Maruo F., Syzmański W. & Węgrzyn M.H. 2020. Mosses and liverworts in the glacier forelands and mature tundra of Svalbard (High Arctic): diversity, ecology, and community composition. Polish Polar Research 41, 151–186, doi: 10.24425/ppr.2020.133011.

Winther J.-G., Godtliebsen F., Gerland S. & Isachsen P.A. 2002. Surface albedo in Ny-Ålesund, Svalbard: variability and trends during 1981–1997. Global and Planetary Change 32, 127–139, doi: 10.1016/S0921-8181(01)00103-5.

Wubet T., Christ S., Schöning I., Boch S., Gawlich M., Schnabel B., Fischer M. & Buscot F. 2012. Differences in soil fungal communities between European beech (Fagus sylvatica L.) dominated forests are related to soil and understorey vegetation. PLoS One 7, e47500, doi: 10.1371/journal.pone.0047500.

Zwolicki A., Zmudczyńska-Skarbek K., Matuła J., Wojtuń B. & Stempniewicz L. 2016. Differential responses of Arctic vegetation to nutrient enrichment by plankton- and fish-eating colonial seabirds in Spitsbergen. Frontiers in Plant Science 7, 1959, doi: 10.3389/fpls.2016.01959.
How to Cite
Newsham K. K., & Goodall-Copestake W. P. (2021). Liverworts frequently form mycothalli on Spitsbergen in the High Arctic. Polar Research, 40.
Research Articles