Modelled realistic daily variation in low winter sea-ice concentration over the Barents Sea amplifies Asian cold events

  • Shengni Duan State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China; and Yunnan Meteorological Service, Yunnan, China
  • Zhina Jiang State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
  • Min Wen State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China
Keywords: Sea-ice loss, extreme weather events, Arctic, Community Atmosphere Model

Abstract

The boreal wintertime atmospheric responses, especially cold events over central Asia, to low sea-ice concentration (SIC) with and without realistic daily variation over the Barents Sea are explored with the Community Atmosphere Model version 4.0 (CAM4.0). The results show that the general atmospheric responses to approximately equal winter-mean Arctic sea-ice loss with a similar pattern but with climatological versus realistic daily variation are different. With the forcing of low SIC with climatological daily variation, Asian cold events become a little longer and stronger than in the control experiment; this mainly results from the enhancement of a 500-hPa Ural anticyclonic anomaly. However, the low SIC forcing that includes realistic daily variability greatly intensifies central Asian cold events and the cyclonic anomaly downstream of the Ural anticyclone. Further analysis reveals that Asian cold events are closely associated with Arctic deep warming at an intraseasonal time scale, which is also the strongest in the perturbed experiment forced by low SIC with realistic daily variation. This work provides a better understanding of the linkage between sea-ice variation over the Barents Sea and central Asian cold events, which may improve extreme weather prediction. It also implies that it is necessary to force air–sea coupling models and atmospheric models with realistic daily SIC in the study of the relationship between Arctic sea ice and mid-latitude cold events.

Downloads

Download data is not yet available.

References


Årthun M., Eldevik T., Smedsrud L.H., Skagseth Ø. & Ingvaldsen R.B. 2012. Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. Journal of Climate 25, 4736–4743, doi: 10.1175/JCLI-D-11-00466.1.


Barnes E.A. 2013. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophysical Research Letters 40, 4734–4739, doi: 10.1029/2012GL051000.


Blackport R., Screen J.A., Wiel K.V.D. & Bintanja R. 2019. Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nature Climate Change 9, 697–704, doi: 10.1038/s41558-019-0551-4.


Cassano E.N., Cassano J.J., Higgins M.E. & Serreze M.C. 2014. Atmospheric impacts of an Arctic sea ice minimum as seen in the Community Atmosphere Model. International Journal of Climatology 34, 766–779, doi: 10.1002/joc.3723.


Chen X.D., Luo D.H., Feldstein S.B. & Lee S.Y. 2017. Impact of winter Ural blocking on Arctic sea ice: short-time variability. Journal of Climate 31, 2267–2282, doi: 10.1175/JCLI-D-17-0194.1.


Cheung H.H.N., Keenlyside N., Omrani N.E. & Zhou W. 2018. Remarkable link between projected uncertainties of Arctic sea-ice decline and winter Eurasian climate. Advances in Atmospheric Sciences 35, 38–51, doi: 10.1007/s00376-017-7156-5.


Cheung H.N., Zhou W., Shao Y.P., Chen W., Mok H.Y. & Wu M.C. 2013. Observational climatology and characteristics of wintertime atmospheric blocking over Ural-Siberia. Climate Dynamics 41, 63–79, doi: 10.1007/s00382-012-1587-6.


Cho K.H. & Chang E.C. 2017. Sensitivity of the sea ice concentration over the Kara–Barents Sea in autumn to the winter temperature variability over East Asia. American Geophysical Union Fall Meeting Abstracts, abstract no. A43D-2472.


Cohen J., Screen J.A., Furtado J.C., Barlow M., Whittleston D., Coumou D., Francis J., Dethloff K., Entekhabi D., Overland J. & Jones J. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience 7, 627–637, doi: 10.1038/NGEO2234.


Cohen, J., Zhang X., Francis J., Francis J., Jung T., Kwok R., Overland J., Ballinger T.J., Bhatt U.S., Chen H.W., Coumou D., Feldstein S., Gu H., Handorf D., Henderson G., Ionita M., Kretschmer M., Laliberte F., Lee S.Y., Linderholm H.W., Maslowski W., Peings Y., Pfeiffer K., Rigor I., Semmler T., Stroeve J., Taylor P.C., Vavrus S., Vihma T., Wang S., Wendisch M., Wu Y. & Yoon J. 2020. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nature Climate Change 10, 20–29, doi: 10.1038/s41558-019-0662-y.


Cohen J., Zhang X., Francis J., Jung T. & Blackport R. 2018. Arctic change and possible influence on mid-latitude climate and weather. US CLIVAR Report March 2018, doi: 10.5065/D6TH8KGW.


Dai G.K., Mu M. & Wang L. 2021. The influence of sudden Arctic sea-ice thinning on North Atlantic Oscillation events. Atmosphere–Ocean 59, 39–52, doi: 10.1080/07055900.2021.1875976.


Dammann D.O., Bhatt U.S., Langen P.L., Krieger J.R. & Zhang X.D. 2013. Impact of daily Arctic sea ice variability in CAM3.0 during fall and winter. Journal of Climate 26, 1939–1955, doi: 10.1175/JCLI-D-11-00710.1.


Dee D.P., Uppala S.M., Simmons A.J., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.-J., Park B.-K., Peubey C., de Rosnay P., Tavolato C., Thépaut J.-N. & Vitart F. 2011. The ERA‐Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society 137, 553–597, doi: 10.1002/qj.828.


Duan S.N. & Jiang Z.N. 2021. Sensitivity of the boreal winter atmosphere to sea ice anomalies in autumn and winter over Barents Sea. Acta Meteorologica Sinica 79, 209–228, doi: 10.11676/qxxb2021.018. (In Chinese with English abstract.)


Francis J.A. & Vavrus S.J. 2012. Evidence linking Arctic amplification to extreme weather in mid‐latitudes. Climate Dynamics 39, L06801, doi: 10.1029/2012GL051000.


Grassi B., Redaelli G. & Visconti G. 2013. Arctic sea ice reduction and extreme climate events over the Mediterranean region. Journal of Climate 26, 10101–10110, doi: 10.1175/JCLI-D-12-00697.1.


Han Z. & Li S.L. 2020. Atmospheric responses over Asia to sea ice loss in the Barents and Kara seas in mid-late winter and early spring: a perspective revealed from CMIP5 data. Advances in Polar Science 31, 55–63, doi: 10.13679/j.advps.2017.0035.


He S.P., Xu X.P., Furevik T. & Gao Y.Q. 2020. Eurasian cooling linked to the vertical distribution of Arctic warming. Geophysical Research Letters 47, e2020GL087212, doi: 10.1029/2020GL087212.


Honda M., Inoue J. & Yamane S. 2009. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophysical Research Letters 36, 1119–1138, doi: 10.1029/2008GL037079.


Hoshi K., Ukita J., Honda M., Tetsu N., Koji Y., Yasunobu Y. & Ralf J. 2019. Weak stratospheric polar vortex events modulated by the Arctic sea‐ice loss. Journal of Geophysical Research—Atmospheres 124, 858–869, doi: 10.1029/2018JD029222.


Inoue J., Hori M.E. & Takaya K. 2012. The role of Barents Sea ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. Journal of Climate 25, 2561–2568, doi: 10.1175/JCLI-D-11-00449.1.


Kelleher M. & Screen J. 2018. Atmospheric precursors of and responses to anomalous Arctic sea ice in CMIP5 models. Advances in Atmospheric Sciences 35, 27–37, doi: CNKI:SUN:DQJZ.0.2018-01-004.


Kretschmer M., Zappa G. & Shepherd T.G. 2020. The role of Barents–Kara sea ice loss in projected polar vortex changes. Weather and Climate Dynamics 1, 715–730, doi: 10.5194/wcd-1-715-2020.


Kug J.S., Jeong J.H., Jang Y.S. & Kim B.M. 2015. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nature Geoscience 8, 759–762. doi: 10.1038/NGEO2517.


Labe Z., Peings Y. & Magnusdottir G. 2018. Contributions of ice thickness to the atmospheric response from projected Arctic sea ice loss. Geophysical Research Letters 45, 5635–5642, doi: 10.1029/2018GL078158.


Labe Z., Peings Y. & Magnusdottir G. 2019. The effect of QBO phase on the atmospheric response to projected Arctic sea ice loss in early winter. Geophysical Research Letters 46, 7663–7671, doi: 10.1029/2019GL083095.


Labe Z., Peings Y. & Magnusdottir G. 2020. Warm Arctic, cold Siberia pattern: role of full Arctic amplification versus sea ice loss alone. Geophysical Research Letters 47, e2020GL088583, doi: 10.1029/2020GL088583.


Li M.Y. & Luo D.H. 2019. Winter Arctic warming and its linkage with midlatitude atmospheric circulation and associated cold extremes: the key role of meridional potential vorticity gradient. Science China Earth Sciences 62, 1329–1339, doi: 10.1007/s11430-018-9350-9.


Liptak J. & Strong C. 2014. The winter atmospheric response to sea ice anomalies in the Barents Sea. Journal of Climate 27, 914–924, doi: 10.1175/JCLI-D-13-00186.1.


Luo D.H., Xiao Y.Q., Yao Y., Dai A.G., Simmonds I. & Franzke C.L.E. 2016. Impact of Ural blocking on winter warm Arctic-cold Eurasian anomalies. Part I: blocking-induced amplification. Journal of Climate, 29, 3925–3947, doi: 10.1175/JCLI-D-15-0611.1.


McKenna C.M., Bracegirdle T.J., Shuckburgh E.F., Haynes P.H. & Joshi M.M. 2018. Arctic sea ice loss in different regions leads to contrasting Northern Hemisphere impacts. Geophysical Research Letters 45, 945–954, doi: 10.1002/2017GL076433.


Neale R.B., Richter J.H., Conley A.J., Park S., Lauritzen P.H., Gettelman A., Williamson D.L., Rasch P.J., Vavrus S.J., Taylor M.A., Collins W.D., Zhang M.H. & Lin S.J. 2010. Description of the NCAR Community Atmosphere Model (CAM4.0). NCAR technical note. NCAR/TN-485+STR. Boulder, CO: National Center for Atmospheric Research.


Overland J.E., Francis J.A., Hall R., Hanna E., Kim S.J. & Vihma T. 2015. The melting Arctic and midlatitude weather patterns: are they connected? Journal of Climate 28, 7917–7932, doi: 10.1175/JCLI-D-14-00822.1.


Overland J.E. & Wang M. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus A 62, 1–9, doi: 10.1111/j.1600-0870.2009.00421.x.


Peings Y. & Magnusdottir G. 2014. Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: a numerical study with CAM5. Journal of Climate 27, 244–264, doi: 10.1175/JCLI-D-13-00272.1.


Petoukhov V. & Semenov V.A. 2010. A link between reduced Barents–Kara sea ice and cold winter extremes over norther continents. Journal of Geophysical Research—Atmospheres 115, D21111, doi:10.1029/2009JD013568.


Sato K., Inoue J. & Watanabe M. 2014. Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environmental Research Letters 9, article no. 084009, doi: 10.1088/1748-9326/9/8/084009.


Screen J.A. & Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337, doi: 10.1038/nature09051.


Screen J.A., Simmonds I., Deser C. & Tomas R. 2013. The atmospheric response to three decades of observed Arctic sea-ice loss. Journal of Climate 26, 1230–1248, doi: 10.1175/JCLI-D-12-00063.1.1.


Sellevold R., Sobolowski S. & Li C. 2016. Investigating possible Arctic–midlatitude teleconnections in a linear framework. Journal of Climate 29, 7329–7343, doi: 10.1175/JCLI-D-15-0902.


Semenov V.A. & Latif M. 2015. Nonlinear winter atmospheric circulation response to Arctic sea ice concentration anomalies for different periods during 1966–2012. Environmental Research Letters 10, article no. 054020, doi: 10.1088/1748-9326/10/5/054020.


Serreze M.C., Barrett A.P., Stroeve J.C., Kindig D.N. & Holland M. 2009. The emergence of surface-based Arctic amplification. The Cryosphere 3, 11–19, doi: 10.5194/tc-3-11-2009.


Simmonds I. 2015. Comparing and contrasting the behavior of Arctic and Antarctic sea ice over the 35 year period 1979–2013. Annals of Glaciology 56, 18–28, doi: 10.3189/2015AoG69A909.


Sui C., Zhang Z., Yu L., Yi L.I. & Mirong S. 2017. Sensitivity and nonlinearity of Eurasian winter temperature response to recent Arctic sea ice loss. Acta Oceanologica Sinica 36, 52–58 , doi: 10.1007/s13131-017-1018-y.


Sun L., Perlwitz J. & Hoerling M. 2016. What caused the recent “warm Arctic, cold continents” trend pattern in winter temperatures? Geophysical Research Letters 43, 5345–5352, doi: 10.1002/2016GL069024.


Takaya K. & Nakamura H. 2001. A formulation of a phase-independent wave-activity flux for stationary and migratory quasi-geostrophic eddies on a zonally varying basic flow. Journal of the Atmospheric Sciences 58, 608–627, doi: 10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.


Tang Q.H., Zhang X.J., Yang X.H. & Francis A.J. 2013. Cold winter extremes in northern continents linked to Arctic sea ice loss. Environmental Research Letters 8, article no. 014036, doi: 10.1088/1748-9326/8/1/014036.


Warner J.L., Screen J.A. & Scaife A.A. 2020. Links between Barents–Kara sea ice and the extratropical atmospheric circulation explained by internal variability and tropical forcing. Geophysical Research Letters 47, article no. e2019GL085679, doi: 10.1029/2019GL085679.


Woollings T., Harvey B. & Masato G. 2014. Arctic warming, atmospheric blocking and cold European winters in CMIP5 models. Environmental Research Letters 9, article no. 014002, doi: 10.1088/1748-9326/9/1/014002.


Wu B.K., Yang K. & Francis J.A. 2017. A cold event in Asia during January–February 2012 and its possible association with Arctic sea ice loss. Journal of Climate 19, 7971–7990, doi: 10.1175/jcli-d-16-0115.1.


Wu B.Y., Su J.Z. & Zhang R.H. 2011. Effects of autumn–winter Arctic sea ice on winter Siberian high. Chinese Science Bulletin 56, 3220–3228, doi: 10.1007/s11434-011-4696-4.


Wu B.Y. & Yang K. 2016. Roles of Arctic sea ice and the preceding summer Arctic atmospheric circulation anomalies in the atmospheric circulations anomalies of 2011/2012 and 2015/2016 winters. Acta Meteorologica Sinica 74, 683–696, doi: 10.7519/j.issn.1000-0526.2016.04.013. (In Chinese with English abstract.)


Wu Q. & Zhang X. 2010. Observed forcing‐feedback processes between Northern Hemisphere atmospheric circulation and Arctic sea ice coverage. Journal of Geophysical Research—Atmospheres 115, D14119, doi: 10.1029/2009JD013574.


Wu Z. & Wang X. 2018. Variability of Arctic sea ice (1979–2016). Water 11, article no. 23, doi: 10.3390/w11010023.s.


Xu M., Tian W.S., Zhang J.K., Wang T. & Qie K. 2021. Impact of sea ice reduction in the Barents and Kara seas on the variation of the East Asian trough in late winter. Climate Dynamics 34, 1081–1097, doi: 10.1175/JCLI-D-20-0205.1.


Xu X.P., He S.P., Gao Y.Q., Furevik T., Wang H.J., Li F. & Ogawa F. 2019. Strengthened linkage between midlatitudes and Arctic in boreal winter. Climate Dynamics 53, 3971–3983, doi: 10.1007/s00382-019-04764-7.


Yang X.Y., Zeng G., Zhang G.W. & Li C. 2021. Linkage between interannual variation of winter cold surge over East Asia and autumn sea ice over the Barents Sea. Theoretical and Applied Climatology 144, 339–351, doi: 10.1007/s00704-021-03545-9.


Yao Y., Luo D.H., Dai A.G. & Simmonds I. 2017. Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I: insights from observational analyses. Journal of Climate 30, 3549–3568, doi: 10.1175/JCLI-D-16-0261.1.


Zhang C., Li S.L. & Wan J.H. 2016. The warmest year 2015 in the instrumental record and its comparison with year 1998. Atmospheric and Oceanic Science Letters 9, 487–494, doi: 10.1080/16742834.2016.1237255.


Zhang P.F., Wu Y.T., Simpson I.R., Smith K.L., Zhang X.D., De B. & Callaghan P. 2018. A stratospheric pathway linking a colder Siberia to Barents–Kara sea ice loss. Science Advances 4, eaat6025, doi: 10.1126/sciadv.aat6025.


Zhu Y.L., Wang H.J., Wang T. & Guo D. 2018. Extreme spring cold spells in north China during 1961–2014 and the evolving processed. Atmospheric and Oceanic Science Letters 11, 56–61, doi: 10.1080/16742834.2018.1514937.


Zhuo W.Q. & Jiang Z.N. 2020. A possible mechanism for winter sea ice decline over the Bering Sea and its relationship with cold events over North America. Journal of Meteorological Research 34, 575–585, doi: 10.1007/s13351-020-9154-2.
Published
2022-11-01
How to Cite
Duan S., Jiang Z., & Wen M. (2022). Modelled realistic daily variation in low winter sea-ice concentration over the Barents Sea amplifies Asian cold events. Polar Research, 41. https://doi.org/10.33265/polar.v41.7834
Section
Research Articles