Case studies of the wind field around Ny-Ålesund, Svalbard, using unmanned aircraft

  • Martin Schön Department of Geosciences, Tübingen University, Germany
  • Irene Suomi Finnish Meteorological Institute, Helsinki, Finland
  • Barbara Altstädter Technische Universität Braunschweig, Braunschweig, Germany
  • Bram van Kesteren Department of Geosciences, Tübingen University, Germany
  • Kjell zum Berge Department of Geosciences, Tübingen University, Germany
  • Andreas Platis Department of Geosciences, Tübingen University, Germany
  • Birgit Wehner Leibniz Institute for Tropospheric Research, Leipzig, Germany
  • Astrid Lampert Technische Universität Braunschweig, Braunschweig, Germany
  • Jens Bange Department of Geosciences, Tübingen University, Germany
Keywords: Microscale meteorology, boundary layer, wind measurement, aircraft measurement, Kongsfjorden, Arctic fjord


The wind field in Arctic fjords is strongly influenced by glaciers, local orography and the interaction between sea and land. Ny-Ålesund, an important location for atmospheric research in the Arctic, is located in Kongsfjorden, a fjord with a complex local wind field that influences measurements in Ny-Ålesund. Using wind measurements from UAS (unmanned aircraft systems), ground measurements, radiosonde and reanalysis data, characteristic processes that determine the wind field around Ny-Ålesund are identified and analysed. UAS measurements and ground measurements show, as did previous studies, a south-east flow along Kongsfjorden, dominating the wind conditions in Ny-Ålesund. The wind measured by the UAS in a valley 1 km west of Ny-Ålesund differs from the wind measured at the ground in Ny-Ålesund. In this valley, we identify a small-scale catabatic flow from the south to south-west as the cause for this difference. Case studies show a backing (counterclockwise rotation with increasing altitude) of the wind direction close to the ground. A katabatic flow is measured near the ground, with a horizontal wind speed up to 5 m s-1. Both the larger-scale south-east flow along the fjord and the local katabatic flows lead to a highly variable wind field, so ground measurements and weather models alone give an incomplete picture. The comparison of UAS measurements, ground measurements and weather conditions analysis using a synoptic model is used to show that the effects measured in the case studies play a role in the Ny-Ålesund wind field in spring.


Download data is not yet available.


Aas W. 2007a. Zeppelin Mountain meteorological measurement (wind speed). Data set. Norwegian Institute for Air Research. Accessed on the internet at on 25 September 2019.

Aas W. 2007b. Zeppelin Mountain meteorological measurement (wind direction). Data set. Norwegian Institute for Air Research. Accessed on the internet at on 25 September 2019.

Altstädter B., Platis A., Wehner B., Scholtz A., Wildmann N., Hermann M., Käthner R., Baars H., Bange J. & Lampert A. 2015. ALADINA—an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer. Atmospheric Measurement Techniques 8, 1627–1639, doi: 10.5194/amt-8-1627-2015.

Argentini S., Viola A.P., Mastrantonio G., Maurizi A., Georgiadis T. & Nardino M. 2003. Characteristics of the boundary layer at Ny-Ålesund in the Arctic during the ARTIST field experiment. Annals of Geophysics 46, 185–196, doi: 10.4401/ag-3414.

Beine H.J., Argentini S., Maurizi A., Viola A. & Mastrantonio G. 2001. The local wind field at Ny-Ålesund and the Zeppelin Mountain at Svalbard. Meteorology and Atmospheric Physics 78, 107–113, doi: 10.1007/s007030170009.

Cisek M., Makuch P. & Petelski T. 2017. Comparison of meteorological conditions in Svalbard fjords: Hornsund and Kongsfjorden. Oceanologia 59, 413–421, doi: 10.1016/j.oceano.2017.06.004.

Egerer U., Ehrlich A., Gottschalk M., Griesche H., Neggers R.A.J., Siebert H. & Wendisch M. 2021. Case study of a humidity layer above Arctic stratocumulus and potential turbulent coupling with the cloud top. Atmospheric Chemistry and Physics 21, 6347–6364, doi: 10.5194/acp-21-6347-2021.

Esau I. & Repina I. 2012. Wind climate in Kongsfjorden, Svalbard, and attribution of leading wind driving mechanisms through turbulence-resolving simulations. Advances in Meteorology 2012, article no. 568454, doi: 10.1155/2012/568454.

Ferrero L., Cappelletti D., Busetto M., Mazzola M., Lupi A., Lanconelli C., Becagli S., Traversi R., Caiazzo L., Giardi F., Moroni B., Crocchianti S., Fierz M., Močnik G., Sangiorgi G., Perrone M.G., Maturilli M., Vitale V., Udisti R. & Bolzacchini E. 2016. Vertical profiles of aerosol and black carbon in the Arctic: a seasonal phenomenology along two years (2011–2012) of field campaign. Atmospheric Chemistry and Physics 16, 12601–12629, doi: 10.5194/acp-16-12601-2016.

Garratt J.R. 1992. The atmospheric boundary layer. Cambridge: Cambridge University Press.

Hartmann J., Albers F. & Argentini S. 1999. Arctic radiation and turbulence interaction study (ARTIST). Berichte zur Polarforschung (Reports on Polar Research) 305. Bremerhaven: Alfred Wegener Institute for Polar and Marine Research.

Køltzow M., Casati B., Bazile E., Haiden T. & Valkonen T. 2019. An NWP model intercomparison of surface weather parameters in the European Arctic during the year of polar prediction special observing period Northern Hemisphere 1. Weather and Forecasting 34, 959–983, doi: 10.1175/WAF-D-19-0003.1.

Lampert A., Altstädter B., Bärfuss K., Bretschneider L., Sandgaard J., Michaelis J., Lobitz L., Asmussen M., Damm E., Käthner R., Krüger T., Lüpkes C., Nowak S., Peuker A., Rausch R., Reisder F., Scholtz A., Zakharov D.S., Gaus D., Bansmer S., Wehner B. & Pätzold F. 2020. Unmanned aerial systems for investigating the polar atmospheric boundary layer—technical challenges and examples of applications. Atmosphere 11, article no. 416, doi: 10.3390/atmos11040416.

Maturilli M. 2020a. Continuous meteorological observations at station Ny-Ålesund (2020-04). Data set. Alfred Wegener Institute, Research Unit Potsdam, PANGAEA®—Data Publisher for Earth & Environmental Science, doi: 10.1594/PANGAEA.925612.

Maturilli M. 2020b. Continuous meteorological observations at station Ny-Ålesund (2020-05). Data set. Alfred Wegener Institute, Research Unit Potsdam, PANGAEA®—Data Publisher for Earth & Environmental Science, doi: 10.1594/PANGAEA.925613.

Maturilli M. 2020c. High resolution radiosonde measurements from station Ny-Ålesund (2017-04 et seq). Data set. Alfred Wegener Institute, Research Unit Potsdam, PANGAEA®—Data Publisher for Earth & Environmental Science, doi: 10.1594/PANGAEA.914973.

Maturilli M. & Kayser M. 2016. Homogenized radiosonde record at station Ny-Ålesund, Spitsbergen, 1993–2014. Data set. Alfred Wegener Institute, Research Unit Potsdam, PANGAEA®—Data Publisher for Earth & Environmental Science, doi: 10.1594/PANGAEA.845373.

MET Norway 2021. MET AROME Arctic. Data set. Accessed on the internet on 6 August 2021.

Müller M., Batrak Y., Kristiansen J., Køltzow M.A., Noer G. & Korosov A. 2017. Characteristics of a convective-scale weather forecasting system for the European Arctic. Monthly Weather Review 145, 4771–4787, doi: 10.1175/MWR-D-17-0194.1.

Petäjä T., Duplissy E.-M., Tabakova K., Schmale J., Altstädter B., Ancellet G., Arshinov M., Balin Y., Baltensperger U., Bange J., Beamish A., Belan B., Berchet A., Bossi R., Cairns W.R.L., Ebinghaus R., El Haddad I., Ferreira-Araujo B., Franck A., Huang L., Hyvärinen A., Humbert A., Kalogridis A.-C., Konstantinov P., Lampert A., MacLeod M., Magand O., Mahura A., Marelle L., Masloboev V., Moisseev D., Moschos V., Neckel N., Onishi T., Osterwalder S., Ovaska A., Paasonen P., Panchenko M., Pankratov F., Pernov J.B., Platis A., Popovicheva O., Raut J.-C., Riandet A., Sachs T., Salvatori R., Salzano R., Schröder L., Schön M., Shevchenko V., Skov H., Sonke J.E., Spolaor A., Stathopoulos V.K., Strahlendorff M., Thomas J.L., Vitale V., Vratolis S., Barbante C., Chabrillat S., Dommergue A., Eleftheriadis K., Heilimo J., Law K.S., Massling A., Noe S.M., Paris J.-D., Prévôt A.S.H., Riipinen I., Wehner B., Xie Z. & Lappalainen H.K. 2020. Overview: integrative and comprehensive understanding on polar environments (iCUPE)—concept and initial results. Atmospheric Chemistry and Physics 20, 8551–8592, doi: 10.5194/acp-20-8551-2020.

Porter C. 2018. Arctic DEM. Data set. University of Minnesota, doi: 10.7910/DVN/OHHUKH.

Rautenberg A., Schön M., zum Berge K., Mauz M., Manz P., Platis A., van Kesteren B., Suomi I., Kral S.T. & Bange J. 2019. The multi-purpose airborne sensor carrier MASC-3 for wind and turbulence measurements in the atmospheric boundary layer. Sensors 19, article no. 2292, doi: 10.3390/s19102292.

Schön M., zum Berge K., Platis A. & Bange J. 2022. UAS-based measurement of wind vector, temperature and humidity in Ny-Alesund, Svalbard, during April and May 2018. Data set. Tübingen University, PANGAEA, doi: 10.1594/PANGAEA.946961.

Svendsen H., Beszczynska-møller A., Hagen J.O., Lefauconnier B., Tverberg V., Gerland S., Ørbæk J.B., Bischof K., Papucci C., Zajaczkowski M., Azzolini R., Bruland O., Wiencke C., Winther J. & Dallmann W. 2002. The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Research 21, 133–166, doi: 10.3402/polar.v21i1.6479.

Tjernström M. & Graversen R.G. 2009. The vertical structure of the lower Arctic troposphere analysed from observations and the ERA-40 reanalysis. Quarterly Journal of the Royal Meteorological Society 135, 431–443, doi: 10.1002/qj.380.

van den Kroonenberg A., Martin T., Buschmann M., Bange J. & Vörsmann P. 2008. Measuring the wind vector using the autonomous mini aerial vehicle M2AV. Journal of Atmospheric and Oceanic Technology 25, 1969–1982, doi: 10.1175/2008JTECHA1114.1.

Vihma T., Kilpeläinen T., Manninen M., Sjöblom A., Jakobson E., Palo T., Jaagus J. & Maturilli M. 2011. Characteristics of temperature and humidity inversions and low-level jets over Svalbard fjords in spring. Advances in Meteorology 2011, article no. 486807, doi: 10.1155/2011/486807.

Wildmann N., Hofsäß M., Weimer F., Joos A. & Bange J. 2014. MASC-a small remotely piloted aircraft (RPA) for wind energy research. Advances in Science and Research 11, article no. 55, doi: 10.5194/asr-11-55-2014.

Wildmann N., Mauz M. & Bange J. 2013. Two fast temperature sensors for probing of the atmospheric boundary layer using small remotely piloted aircraft (RPA). Atmospheric Measurement Techniques 6, 2101–2113, doi: 10.5194/amt-6-2101-2013.

Wildmann N., Ravi S. & Bange J. 2014. Towards higher accuracy and better frequency response with standard multi-hole probes in turbulence measurement with remotely piloted aircraft (RPA). Atmospheric Measurement Techniques 7, 1027–1041, doi: 10.5194/amt-7-1027-2014.
How to Cite
Schön M., Suomi I., Altstädter B., van Kesteren B., zum Berge K., Platis A., Wehner B., Lampert A., & Bange J. (2022). Case studies of the wind field around Ny-Ålesund, Svalbard, using unmanned aircraft. Polar Research, 41.
Research Articles