Value of the Copernicus Arctic Regional Reanalysis (CARRA) in representing near-surface temperature and wind speed in the north-east European Arctic

  • Morten Køltzow Norwegian Meteorological Institute, Oslo, Norway
  • Harald Schyberg Norwegian Meteorological Institute, Oslo, Norway
  • Eivind Støylen Norwegian Meteorological Institute, Oslo, Norway
  • Xiaohua Yang Denmark Meteorological Institute, Copenhagen, Denmark
Keywords: High-resolution, weather, climate, polar low, northern Fennoscandia, Svalbard

Abstract

The representation of 2-m air temperature and 10-m wind speed in the high-resolution (with a 2.5-km grid spacing) Copernicus Arctic Regional Reanalysis (CARRA) and the coarser resolution (ca. 31-km grid spacing) global European Center for Medium-range Weather Forecasts fifth-generation reanalysis (ERA5) for Svalbard, northern Norway, Sweden and Finland is evaluated against observations. The largest differences between the two reanalyses are found in regions with complex terrain and coastlines, and over the sea ice for temperature in winter. In most aspects, CARRA outperforms ERA5 in its agreement with the observations, but the value added by CARRA varies with region and season. Furthermore, the added value by CARRA is seen for both parameters but is more pronounced for temperature than wind speed. CARRA is in better agreement with observations in terms of general evaluation metrics like bias and standard deviation of the errors, is more similar to the observed spatial and temporal variability and better captures local extremes. A better representation of high-impact weather like polar lows, vessel icing and warm spells during winter is also demonstrated. Finally, it is shown that a substantial part of the difference between reanalyses and observations is due to representativeness issues, that is, sub-grid variability, which cannot be represented in gridded data. This representativeness error is larger in ERA5 than in CARRA, but the fraction of the total error is estimated to be similar in the two analyses for temperature but larger in ERA5 for wind speed.

Downloads

Download data is not yet available.

References


Arduini G., Balsamo G., Dutra E., Day J.J., Sandu I., Boussetta S. & Haiden T. 2019. Impact of a multi-layer snow scheme on near-surface weather forecasts. Journal of Advances in Modeling Earth Systems 11, 4687–4710, doi: 10.1029/2019MS001725.


Atlaskin E. & Vihma T. 2012. Evaluation of NWP results for wintertime nocturnal boundary-layer temperatures over Europe and Finland. Quarterly Journal of the Royal Meteorological Society 138, 1440–1451, doi: 10.1002/qj.1885.


Avila-Diaz A., Bromwich D.H., Wilson A.B., Justino F. & Wang S. 2021. Climate extremes across the North American Arctic in modern reanalyses. Journal of Climate 34, 2385–2410, doi: 10.1175/JCLI-D-20-0093.1.


Batrak Y. & Müller M. 2019. On the warm bias in atmospheric reanalyses induced by the missing snow over Arctic sea-ice. Nature Communications 10, article no. 4170, doi: 10.1038/s41467-019-11975-3.


Betts A.K., Chan D.Z. & Desjardins R.L. 2019. Near-surface biases in ERA5 over the Canadian prairies. Frontiers in Environmental Science 7, article no. 129, doi: 10.3389/fenvs.2019.00129.


Bromwich D.H., Wilson A.B., Bai L., Liu Z., Barlage M., Shih C.-F., Maldonado S., Hines K.M., Wang S.-H., Woollen J., Kuo B., Lin H.-C., Wee T.-K., Serreze M.C. & Walsh J.E. 2018. The Arctic System Reanalysis, version 2. Bulletin of the American Meteorological Society 99, 805–828, doi: 10.1175/BAMS-D-16-0215.1.


Copernicus Climate Change Service 2017. ERA5: fifth generation of ECMWF atmospheric reanalyses of the global climate, Copernicus Climate Change Service Climate Data Store (CDS). Accessed on the internet at https://cds.climate.copernicus.eu/cdsapp#!/home on 18 June 2021


Delhasse A., Kittel C., Amory C., Hofer S., van As D., S. Fausto R. & Fettweis X. 2020. Brief communication: evaluation of the near-surface climate in ERA5 over the Greenland Ice Sheet. The Cryosphere 14, 957–965, doi: 10.5194/tc-14-957-2020.


Demchev D.M., Kulakov M.Y., Makshtas A.P., Makhotina I.A., Fil’chuk K.V. & Frolov I.E. 2020. Verification of ERA-Interim and ERA5 Reanalyses Data on surface air temperature in the Arctic. Russian Meteorology and Hydrology 45, 771–777, doi: 10.3103/S1068373920110035.


Göber M., Zsótér E. & Richardson D.S. 2008. Could a perfect model ever satisfy a naïve forecaster? On grid box mean versus point verification. Meteorological Applications 15, 359–365, doi: 10.1002/met.78.


Graham R.M., Cohen L., Ritzhaupt N., Segger B., Graversen R.G., Rinke A., Walden V.P., Granskog M.A. & Hudson S.R. 2019. Evaluation of six atmospheric reanalyses over Arctic sea ice from winter to early summer. Journal of Climate 32, 4121–4143, doi: 10.1175/JCLI-D-18-0643.1.


Hansen B.B., Isaksen K., Benestad R.E., Kohler J., Pedersen Å.Ø., Loe L.E., Coulson S.J., Larsen J.O. & Varpe Ø. 2014. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic. Environmental Research Letters 9, article no. 114021, doi: 10.1088/1748-9326/9/11/114021.


Hersbach H., Bell B., Berrisford P. Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., De Chiara G., Dahlgren P., Dee D., Diamantakis M., Dragani D., Flemming J., Forbes R., Fuentes M., Geer A., Haimberger L., Healy S., Hogan R.J., Hólm E., Janisková M., Keeley S., Laloyaux P., Lopez P., Lupu C., Radnoti G., de Rosnay P., Rozum I., Vamborg F., Villaume S. & Thépaut J.-N. 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146, 1999–2049, doi: 10.1002/qj.3803.


Hogan R.J. & Bozzo A. 2015. Mitigating errors in surface temperature forecasts using approximate radiation updates. Journal of Advances in Modeling Earth Systems 7, 836–853, doi: 10.1002/2015MS000455.


Kaiser-Weiss A.K., Borsche M., Niermann D., Kaspar F., Lussana C., Isotta F.A., van den Besselaar E., van der Schrier G. & Undén P. 2019. Added value of regional reanalyses for climatological applications. Environmental Research Communication 1, article no. 071004, doi: 10.1088/2515-7620/ab2ec3.


Kaspar F., Niermann D., Borsche M., Fiedler S., Keller J., Potthast R., Rösch T., Spangehl T. & Tinz B. 2020. Regional atmospheric reanalysis activities at Deutscher Wetterdienst: review of evaluation results and application examples with a focus on renewable energy, Advances in Science and Research 17, 115–128, doi: 10.5194/asr-17-115-2020.


Keller J.D. & Wahl S. 2021. Representation of climate in reanalyses: an intercomparison for Europe and North America. Journal of Climate 34, 1667–1684, doi: 10.1175/JCLI-D-20-0609.1.


Køltzow M., Casati B., Bazile E., Haiden T. & Valkonen T. 2019. An NWP model intercomparison of surface weather parameters in the European Arctic during the Year of Polar Prediction Special Observing Period Northern Hemisphere 1. Weather and Forecasting 34, 959–983, doi: 10.1175/WAF-D-19-0003.1.


Køltzow M., Hallerstig M., Graversen R., Jonassen M. & Mayer S. 2020. Verification metrics and diagnostics appropriate for the (maritime) Arctic. MET Report 2/2020. Oslo: Norwegian Meteorological Institute.


Marzban C., Sandgathe S., Lyons H. & Lederer N. 2009. Three spatial verification techniques: cluster analysis, variogram, and optical flow. Weather and Forecasting 24, 1457–1471, doi: 10.1175/2009WAF2222261.1.


Moreno-Ibáñez M., Laprise R. & Gachon P. 2021. Recent advances in polar low research: current knowledge, challenges and future perspectives. Tellus Series A 73, 1–31, doi: 10.1080/16000870.2021.1890412.


Müller M., Batrak Y., Kristiansen J., Køltzow M.A., Noer G. & Korosov A. 2017. Characteristics of a convective-scale weather forecasting system for the European Arctic. Monthly Weather Review 145, 4771–4787, doi: 10.1175/MWR-D-17-0194.1.


Rojo M., Noer G. & Claud C. 2019. Polar Low tracks in the Norwegian Sea and the Barents Sea from 1999 until 2019. Pangaea, doi: 10.1594/PANGAEA.903058.


Samuelsen E.M. 2017. Prediction of ship icing in Arctic waters—observations and modelling for application in operational weather forecasting. PhD thesis, UiT The Arctic University of Norway.


Samuelsen E.M. & Graversen R. 2019. Weather situation during observed ship-icing events off the coast of northern Norway and the Svalbard archipelago. Weather and Climate Extremes 24, article no. 100200, doi: 10.1016/j.wace.2019.100200.


Sandu I., Beljaars A., Bechtold P., Mauritsen T. & Balsamo G. 2013. Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? Journal of Advances in Modeling Earth Systems 5, 117–133, doi: 10.1002/jame.20013.


Serreze M.C., Crawford A.D. & Barrett A.P. 2015. Extreme daily precipitation events at Spitsbergen, an Arctic island. International Journal of Climatology 35, 4574–4588, doi: 10.1002/joc.4308.


Sheridan S.C., Lee C.C. & Smith E.T. 2020. A comparison between station observations and reanalysis data in the identification of extreme temperature events. Geophysical Research Letters 47, e2020GL088120, doi: 10.1029/2020GL088120.


Skamarock W.C. 2004. Evaluating mesoscale NWP models using kinetic energy spectra. Monthly Weather Review 132, 3019–3032, doi: 10.1175/MWR2830.1.


Spengler T., Claud C. & Heinemann G. 2017. Polar Low Workshop summary. Bulletin of the American Meteorological Society 98, ES139–ES142, doi: 10.1175/BAMS-D-16-0207.1.


Tetzner D., Thomas E. & Allen C.A. 2019. Validation of ERA5 reanalysis data in the southern Antarctic Peninsula–Ellsworth Land region, and its implications for ice core studies. Geosciences 2019, article no. 289, doi: 10.3390/geosciences9070289.


Vikhamar-Schuler D., Isaksen K., Haugen J.E., Tømmervik H., Luks B., Schuler T.V. & Bjerke J.W. 2016. Changes in winter warming events in the Nordic Arctic region. Journal of Climate 29, 6223–6244, doi: 10.1175/JCLI-D-15-0763.1.


Walsh J.E., Ballinger T.J., Euskirchen E.S., Hanna E., Mård J., Overland J.E., Tangen H. & Wihma T. 2020. Extreme weather and climate events in northern areas: a review. Earth-Science Reviews 209, article no. 103324, doi: 10.1016/j.earscirev.2020.103324.


Wang C., Graham R.M., Wang K., Gerland S. & Granskog M.A. 2019. Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution. The Cryosphere 13, 1661–1679, doi: 10.5194/tc-13-1661-2019.


Yang X., Palmason B., Sattler K., Thorsteinsson S., Amstrup B., Dahlbom M., Hansen-Sass B., Pagn Nielsen K. & Petersen G.N. 2018. IGB, the upgrade to the joint operational HARMONIE by DMI and IMO in 2018. Aladin-Hirlam Newsletter 11, 93–96. Accessed on the internet at http://www.umr-cnrm.fr/aladin/IMG/pdf/nl11.pdf


Yang X., Schyberg H., Palmason B., Bojarova J., Box J., Pagh Nielsen K., Amstrup B., Peralta C., Høyer J., Nielsen Englyst P., Homleid M. Køltzow M.A.Ø., Randriamampianina R., Dahlgren P., Støylen E., Valkonen T., Thorsteinsson S., Kornich H., Lindskog M. & Mankoff K. 2020. C3S Arctic regional reanalysis—full system documentation. Accessed on the internet at https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-carra-single-levels?tab=doc on 1 November 2021
Published
2022-03-31
How to Cite
KøltzowM., SchybergH., StøylenE., & YangX. (2022). Value of the Copernicus Arctic Regional Reanalysis (CARRA) in representing near-surface temperature and wind speed in the north-east European Arctic. Polar Research, 41. https://doi.org/10.33265/polar.v41.8002
Section
Research Articles