Polar bear depredation of a thick-billed murre fledgling in open water at Prince Leopold Island, Nunavut

  • Martyn E. Obbard Wildlife Research and Development Section, Ontario Ministry of Natural Resources and Forestry, Peterborough, ON, Canada https://orcid.org/0000-0003-2064-0155
  • Christopher Di Corrado Garibaldi Highlands, BC, Canada
  • João Franco Bombarral, Portugal
  • Roger Pimenta Vancouver, BC, Canada
  • Boris Wise Durango, CO, USA
Keywords: Climate warming, plasticity in foraging behaviour, Uria lomvia, Ursus maritimus, sea-ice loss, jumplings

Abstract

Sea-ice distribution and duration are declining across the circumpolar range of the polar bear (Ursus maritimus), resulting in a reduced access to ice-obligate seals, its primary prey. Consequently, polar bears may have increased reliance on alternative food sources in the future. Foraging on land is well documented but foraging in open water is less understood. We report the successful depredation of a thick-billed murre (Uria lomvia) in open water near Prince Leopold Island, Nunavut, and discuss implications for understanding the behavioural plasticity of polar bears and their opportunistic foraging patterns.

_______________________________

View the supplementary video

Downloads

Download data is not yet available.

References


Amstrup S.C., Marcot B.G. & Douglas D.C. 2008. A Bayesian network modeling approach to forecasting the 21st century worldwide status of polar bears. In E.T. DeWeaver et al. (eds.): Arctic sea ice decline: observations, projections, mechanisms, and implications. Pp. 1213–268. Washington, DC: American Geophysical Union.


Beamish F.W.H. 1980. Swimming performance and oxygen consumption of the charrs. In E.K. Balon (ed.): Charrs, salmonid fishes of the genus Salvelinus. Pp. 739–748. The Hague: Dr. W. Junk Publishers.


Bourque J., Atwood T.C., Divoky G.J., Stewart C. & McKinney M.A. 2020. Fatty acid-based diet estimates suggest ringed seal remain the main prey of southern Beaufort Sea polar bears despite recent use of onshore food resources. Ecology and Evolution 10, 2093–2103, doi: 10.1002/ECE3.6043.


Crawford A., Stroeve J., Smith A. & Jahn A. 2021. Arctic open-water periods are projected to lengthen dramatically by 2100. Communications Earth & Environment 2, article no. 109, doi: 10.1038/s43247-021-00183-x.


Croll D.A., Gaston A.J., Burger A.E. & Konnoff D. 1992. Foraging behavior and physiological adaptation for diving in thick-billed murres. Ecology 73, 344–356, doi: 10.2307/1938746.


Dey C.J., Richardson E., McGeachy D., Iverson S.A., Gilchrist H.G. & Semeniuk C.A.D. 2017. Increasing nest predation will be insufficient to maintain polar bear body condition in the face of sea ice loss. Global Change Biology 23, 1821–1831, doi: 10.1111/gcb.13499.


Donaldson G.M., Chapdelaine G. & Andrews J.D. 1995. Predation of thick-billed murres, Uria lomvia, at two breeding colonies by polar bears, Ursus maritimus, and walruses, Odobenus rosmarus. Canadian Field-Naturalist 109, 112–114.


Dyck M.G. & Romberg S. 2007. Observations of a wild polar bear (Ursus maritimus) successfully fishing Arctic charr (Salvelinus alpinus) and fourhorn sculpin (Myoxocephalus quadricornis). Polar Biology 30, 1625–1628, doi: 10.1007/s00300-007-0338-3.


Environment and Climate Change Canada 2019. Prince Leopold Island migratory bird sanctuary. Accessed on the internet at www.canada.ca/en/environment-climate-change/services/migratory-bird-sanctuaries/locations/prince-leopold-island.html on 29 October 2019.


Gaston A.J. & Hipfner J.M. 2020. Thick-billed murre (Uria lomvia). Version 1.0. In S.M. Billerman (ed.): Birds of the world. Ithaca, NY: Cornell Lab of Ornithology. doi: 10.2173/BOW.THBMUR.01. Accessed on the internet at https://birdsoftheworld.org/bow/species/thbmur/cur/introduction on 13 July 2021.


Gormezano L.J. & Rockwell R.F. 2013. Dietary composition and spatial patterns of polar bear foraging on land in western Hudson Bay. BMC Ecology 13, article no. 51, doi: 10.1186/1472-6785-13-51.


Gormezano L.J. & Rockwell R.F. 2015. The energetic value of land-based foods in western Hudson Bay and their potential to alleviate energy deficits of starving adult male polar bears. PLoS One 10, e0128520, doi: 10.1371/journal.pone.0128520.


Iverson S.A., Gilchrist H.G., Smith P.A., Gaston A.J. & Forbes M.R. 2014. Longer ice-free seasons increase the risk of nest depredation by polar bears for colonial breeding birds in the Canadian Arctic. Proceedings of the Royal Society of London B 281, article no. 20133128, doi: 10.1098/rspb.2013.3128.


Laidre K.L., Atkinson S.N., Regehr E.V., Stern H.L., Born E.W., Wiig Ø., Lunn N.J., Dyck M., Heagerty P. & Cohen B.R. 2020. Transient benefits of climate change for a High-Arctic polar bear (Ursus maritimus) subpopulation. Global Change Biology 26, 6251–6265, doi: 10.1111/gcb.15286.


Lefevre K.L., Montgomerie R. & Gaston A.J. 1998. Parent–offspring recognition in thick-billed murres (Aves: Alcidae). Animal Behaviour 55, 925–938, doi: 10.1006/anbe.1997.0626.


Lunn N.J., Branigan M., Carpenter L., Justus J., Hedman D., Larsen D., Lefort S., Maraj R., Obbard M.E., Peacock E. & Pokiak F. 2010. Polar bear management in Canada, 2005–2008. In M.E. Obbard et al. (eds.): Polar pears: proceedings of the 15th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, 29 June-3 July 2009, Copenhagen, Denmark. Occasional Paper of the IUCN Species Survival Commission 43. Pp. 87–113. Gland, Switzerland: International Union for Conservation of Nature and Natural Resources.


Lunn N.J., Servanty S., Regehr E.V., Converse S.J., Richardson E. & Stirling I. 2016. Demography of an apex predator at the edge of its range: impacts of changing sea ice on polar bears in Hudson Bay. Ecological Applications 26, 1302–1320, doi: 10.1890/15-1256.


Molnár P.K., Bitz C.M., Holland M.M., Kay J.E., Penk S.R. & Amstrup S.C. 2020. Fasting season length sets temporal limits for global polar bear persistence. Nature Climate Change 10, 732–738, doi: 10.1038/s41558-020-0818-9.


Obbard M.E., Cattet M.R.L., Howe E.J., Middel K.R., Newton E.J., Kolenosky G.B., Abraham K.F. & Greenwood C.J. 2016. Trends in body condition in polar bears (Ursus maritimus) from the southern Hudson Bay subpopulation in relation to changes in sea ice. Arctic Science 2, 15–32, doi: 10.1139/as-2015-0027.


Obbard M.E., Stapleton S., Szor G., Middel K.R., Jutras C. & Dyck M. 2018. Re-assessing abundance of southern Hudson Bay polar bears by aerial survey: effects of climate change at the southern edge of the range. Arctic Science 4, 634–655, doi: 10.1139/as-2018-0004.


Parks Canada 2019. Tallurutiup Imanga National Marine Conservation Area. Accessed on the internet at www.pc.gc.ca/en/amnc-nmca/cnamnc-cnnmca/tallurutiup-imanga on 15 July 2021.


Prop J., Aars J., Bårdsen B-J., Hanssen S.A., Bech C., Bourgeon S., de Fouw J., Gabrielsen G.W., Lang J., Noreen E., Oudman T., Sittler B., Stempniewicz L., Tombre I., Wolters E. & Moe B. 2015. Climate change and the increasing impact of polar bears on bird populations. Frontiers in Ecology and Evolution 3, article no. 33, doi: 10.3389/fevo.2015.00033


Prop J., Oudman T., Van Spanje T.M. & Wolters E.H. 2013. Patterns of predation of pink-footed goose nests by polar bear. Ornis Norvegica 36, 38–46, doi: 10.15845/on.v36i0.439


Rockwell R.F. & Gormezano L.J. 2009. The early bear gets the goose: climate change, polar bears and lesser snow geese in western Hudson Bay. Polar Biology 32, 539–547, doi: 10.1007/s00300-008-0548-3.


Rode K.D., Robbins C.T., Nelson L. & Amstrup S.C. 2015. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities? Frontiers in Ecology and the Environment 13, 138–145, doi: 10.1890/140202.


Russell R.H. 1975. The food habits of polar bears of James Bay and southwest Hudson Bay in summer and autumn. Arctic 28, 117–129, doi: 10.14430/arctic2823.


Smith A.E. & Hill M.R.J. 1996. Polar bear, Ursus maritimus, depredation of Canada goose, Branta canadensis, nests. Canadian Field-Naturalist 110, 339–340.


Smith P.A., Elliott K.H., Gaston A.J. & Gilchrist H.G. 2010. Has early ice clearance increased predation on breeding birds by polar bears? Polar Biology 33, 1149–1153, doi: 10.1007/s00300-010-0791-2.


Smith T.G. 1980. Polar bear predation of ringed and bearded seals in the land-fast sea ice habitat. Canadian Journal of Zoology 58, 2201–2209, doi: 10.1139/z80-302.


Stempniewicz L. 1993. The polar bear Ursus maritimus feeding in a seabird colony in Frans Josef Land. Polar Research 12, 33–36, doi: 10.3402/POLAR.V12I1.6701.


Stempniewicz L. 2006. Polar bear predatory behaviour toward molting barnacle geese and nesting glaucous gulls on Spitsbergen. Arctic 59, 247–251, doi: 10.14430/arctic310.


Stempniewicz L., Kidawa D., Barcikowski M. & Iliszko L. 2014. Unusual hunting and feeding behaviour of polar bears on Spitsbergen. Polar Record 50, 216–219, doi: 10.1017/S0032247413000053.


Stern H.L. & Laidre K.L. 2016. Sea-ice indicators of polar bear habitat. The Cryosphere 10, 2027–2041, doi: 10.5194/tc-10-2027-2016.


Stirling I. 1974. Midsummer observations on the behavior of wild polar bears (Ursus maritimus). Canadian Journal of Zoology 52, 1191–1198, doi: 10.1139/z74-157.


Stirling I. & Archibald W.R. 1977. Aspects of predation of seals by polar bears. Journal of Fisheries Research Board of Canada 34, 1126–1129, doi: 10.1139/f77-169.


Stirling I. & Parkinson C.L. 2006. Possible effects of climate warming on selected populations of polar bears (Ursus maritimus) in the Canadian Arctic. Arctic 59, 261–275, doi: 10.14430/arctic312.


Stirling I. & van Meurs R. 2015. Longest recorded underwater dive by a polar bear. Polar Biology 38, 1301–1304, doi: 10.1007/s00300-015-1684-1.


Stroeve J. & Notz D. 2018. Changing state of Arctic sea ice across all seasons. Environmental Research Letters 13, article no. 103001, doi: 10.1088/1748-9326/aade56.
Published
2022-04-12
How to Cite
ObbardM. E., Di CorradoC., FrancoJ., PimentaR., & WiseB. (2022). Polar bear depredation of a thick-billed murre fledgling in open water at Prince Leopold Island, Nunavut. Polar Research, 41. https://doi.org/10.33265/polar.v41.8176
Section
Research Notes