Local temperature near native vascular plants in the Argentine Islands–Kyiv Peninsula region, Antarctic Peninsula: annual variability and approximation using standard meteorological measurements

  • Mykhailo V. Savenets Ukrainian Hydrometeorological Institute, Kyiv, Ukraine
  • Larysa Pysarenko Ukrainian Hydrometeorological Institute, Kyiv, Ukraine
  • Svitlana Krakovska Ukrainian Hydrometeorological Institute, Kyiv, Ukraine; and State Institution National Antarctic Scientific Center, Kyiv, Ukraine
  • Ivan Parnikoza State Institution National Antarctic Scientific Center, Kyiv, Ukraine; and Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • Denis Pishniak State Institution National Antarctic Scientific Center, Kyiv, Ukraine
Keywords: Microclimate, microhabitat, mini-logger, Deschampsia antarctica, Colobanthus quitensis, vegetation


We describe the main features of LT variability that influence native vascular plants in the Antarctic and examine the relationship between the temperature regime at the micro-level and meteorological conditions at the macro-level. We used a period of over a year, during which 37 specialized mini-loggers recorded LT near vascular plants in the Argentine Islands–Kyiv Peninsula region of the Antarctic Peninsula. Rather than measuring standard air or soil temperature, these loggers detect the temperature near the ground, in the microhabitats that harbour vascular plants. On a daily scale, LT correlates with standard (2-m) air temperature, with the values higher at rock slopes than at rock terraces and ledges. A moderate correlation was found with wind and radiation parameters. Seasonality accounted for 75–93% of total LT variability, with better results on open rock terraces compared to protected areas and clefts. LT day-to-day variability during the cold season is mostly responsible for differences in R2 of the annual cycle. We estimated daily mean LT using regression dependencies from 2-m air temperature and wind speed measured at a nearby meteorological station. R2 for these statistical models varies from 0.46 to 0.68. However, they underestimate the observed LT. LT measured on rock slopes showed better modelling results with air temperature, whereas wind speed was a better predictor on rock ledges. This study contributes to our understanding of the micro-scale temperature regime that influences native vascular plants and provides a method for its rough approximation using standard meteorological parameters.


Download data is not yet available.


Abakumov E.V. & Parnikoza I.Y. 2015. Determination of the soil–permafrost border in two maritime Antarctic regions on the base of vertical electric sounding data. Ukrainian Antarctic Journal 14, 138–142, doi: 10.33275/1727-7485.14.2015.182.

Aerts R., Cornelissen J.H.C. & Dorrepaal E. 2006. Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology 182, 65–77, doi: 10.1007/s11258-005-9031-1.

Bartak M., Laska K., Hajek J. & Vaczi P. 2019. Microclimate variability of Antarctic terrestrial ecosystems manipulated by open top chambers: comparison of selected austral summer seasons within a decade. Czech Polar Reports 9, 88–106, doi: 10.5817/CPR2019-1-8.

Bokhorst S., Huiskes A., Aerts R., Convey P., Cooper E.J., Dalen L., Erschbamer B., Gudmundsson J., Hofgaard A., Hollister R.D., Johnstone J., Jónsdóttir I.S., Lebouvier M., Van de Vijver B., Wahren C.-H. & Dorrepaal E. 2012. Variable temperature effects of open top chambers at polar and alpine sites explained by irradiance and snow depth. Global Change Biology 19, 64–74, doi: 10.1111/gcb.12028.

Bokhorst S., Huiskes A., Convey P. & Aerts R. 2007. The effect of environmental change on vascular plant and cryptogam communities from the Falkland Islands and the maritime Antarctic. BMC Ecology 7, article no. 15, doi: 10.1186/1472-6785-7-15.

Bokhorst S., Huiskes A., Convey P., Sinclair B.J., Lebouvier M., Van de Vijver B. & Wall D.H. 2011. Microclimate impacts of passive warming methods in Antarctica: implications for climate change studies. Polar Biology 34, 1421–1435, doi: 10.1007/s00300-011-0997-y.

Bokhorst S., Huiskes A., Convey P., van Bodegom M. & Aerts R. 2008. Climate change effects on soil arthropod communities from the Falkland Islands and the maritime Antarctic. Soil Biology and Biochemistry 40, 1547–1556, doi: 10.1016/j.soilbio.2008.01.017.

Bokhorst S., Pedersen S.H., Brucker L., Anisimov O., Bjerke J.W., Brown R.D., Ehrich D., Essery R., Heilig A., Ingvander S., Johansson C., Johansson M., Jónsdóttir I.S., Inga N., Luojus K., Macelloni G., Mariash H., McLennan D., Rosqvist G.N., Sato A., Savela H., Schneebeli M., Sokolov A., Sokratov S.A., Terzago S., Vikhamar-Schuler D., Williamson S., Qiu Y. & Callaghan T.V. 2016. Changing arctic snow cover: a review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio 45, 516–537, doi: 10.1007/s13280-016-0770-0.

Cannone N., Guglielmin M., Convey P., Worland M.R. & Favero Longo S.E. 2016. Vascular plant changes in extreme environments: effects of multiple drivers. Climatic Change 134, 651–665, doi: 10.1007/s10584-015-1551-7.

Cannone N., Guglielmin M., Malfasi F., Hubberten H.W. & Wagner D. 2021. Rapid soil and vegetation changes at regional scale in continental Antarctica. Geoderma 394, 115017, doi: 10.1016/j.geoderma.2021.115017.

Casanova-Katny M.A., Palfner G., Torres-Mellado G. & Cavieres L.A. 2014. Do Antarctic lichens modify microclimate and facilitate vascular plants in the maritime Antarctica? A comment to Molina-Montenegro et al. (2014). Journal of Vegetation Science 25, 601–605, doi: 10.1111/jvs.12122.

Convey P. 2011. Antarctic terrestrial biodiversity in a changing world. Polar Biology 34, 1629–1641, doi: 10.1007/s00300-011-1068-0.

Convey P. 2012. Polar terrestrial environments. In E. Bell (ed.): Life at extremes: environments, organisms and strategies for survival. Pp. 81–102. Wallingford: CAB International.

Convey P., Coulson S.J., Worland M.R. & Sjöblom A. 2018. The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biology 41, 1587–1605, doi: 10.1007/s00300-018-2299-0.

Convey P. & Smith R. 2006. Responses of terrestrial Antarctic ecosystems to climate change. Plant Ecology 182, 1–10, doi: 10.1007/s11258-005-9022-2.

Davey M., Pickup J. & Block W. 1992. Temperature variation and its biological significance in fellfield habitats on a maritime Antarctic Island. Antarctic Science 4, 383–388, doi: 10.1017/S0954102092000567.

Gerighausen U., Brautigam K., Mustafa O. & Peter H.U. 2003. Expansion of vascular plants on an Antarctic island as a consequence of climate change? In A. Huiskes et al. (eds.): Antarctic biology in a global context. Pp. 79–83. Leiden: Backhuys Publishers.

Gjessing Y. & Øvstedal D.O. 1989. Microclimates and water budget of algae, lichens and a moss on some nunataks in Queen Maud Land. International Journal of Biometeorology 33, 272–281, doi: 10.1007/BF01051089.

Graae B.J., De Frenne P., Kolb A., Brunet J., Chabrerie O., Verheyen K., Pepin N., Heinken T., Zobel M., Shevtsova A., Nijs I. & Milbau A. 2012. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121, 3–19, doi: 10.1111/j.1600-0706.2011.19694.x.

Guglielmin M., Worland M.R. & Cannone N. 2012. Spatial and temporal variability of ground surface temperature and active layer thickness at the margin of maritime Antarctica, Signy Island. Geomorphology 155–156, 20–33, doi: 10.1016/j.geomorph.2011.12.016.

Hogg I.D., Cary S.C., Convey P., Newsham K.K., O’Donnell A.G., Adams B.J., Aislabie J., Frati F., Stevens M.I. & Wallh D.H. 2006. Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biology & Biochemistry 38, 3035–3040, doi: 10.1016/j.soilbio.2006.04.026.

Hrbáček F., Cannone N., Kňažková M., Malfasi F., Convey P. & Guglielmin M. 2020. Effect of climate and moss vegetation on ground surface temperature and the active layer among different biogeographical regions in Antarctica. Catena 190, article no. 104562, doi: 10.1016/j.catena.2020.104562.

Miotke F.-D. 1988. Microclimate, weathering processes and salt within ice-free continental Antarctica. Polarforschung 58, 201–209.

Molina-Montenegro M.A., Ricote-Martínez N., Muñoz-Ramírez C., Gómez-González S., Torres-Díaz C., Salgado-Luarte C. & Gianoli E. 2013. Positive interactions between the lichen Usnea antarctica (Parmeliacea) and the native flora in Maritime Antarctica. Journal of Vegetation Science 24, 463–472, doi: 10.1111/j.1654-1103.2012.01480.x.

Molina-Montenegro M.A., Torres-Diaz C. & Gianoli E. 2014. Antarctic macrolichen modifies microclimate and facilitates vascular plants in the maritime Antarctica—a reply to Casanova-Katny et al. (2014). Journal of Vegetation Science 25, 606–608, doi: 10.1111/jvs.12141.

Oliphant A.J., Hindmarsh R., Cullen N. & Lawson W. 2015. Microclimate and mass fluxes of debris-laden ice surfaces in Taylor Valley, Antarctica. Antarctic Science 27, 85–100, doi: 10.1017/S0954102014000534.

Parnikoza I.Y., Abakumov E.V., Dykyy I.V., Pilipenko D.V., Shvydun P.P., Kozeretska I.A. & Kunakh V.A. 2015. Vlijanie ptic na prostranstvennoe raspredelenie Deschampsia antarctica Desv. Ostrova Galindez (Argentinskie Ostrova, priberežnaja Antarktika). (Influence of birds on the spatial distribution of Desсhampsia antarctica [Desv.] on Galindez Island [Argentinean Islands, coastal Antarctic].) Vestnik of Saint Petersburg University, Series 3, Biology 1, 78–97. (In Russian with English abstract.)

Parnikoza I.Y., Abakumov E.V., Korsun S., Klymenko I., Netsyk M., Kudinova A. & Kozeretska I. 2016. Soils of the Argentine Islands, Antarctica: diversity and characteristics. Polarforschung 86, 83–96, doi: 10.2312/polarforschung.86.2.83.

Parnikoza I.Y., Berezkina A., Moiseyenko Y., Malanchuk V. & Kunakh V. 2018. Kompleksna harakterystyka rajonu Argentynskih Ostroviv ta Ostrova Galindez (morska Antarktyka) jak poligonu dlja vyvčennja dynamiki nazemnoji roslynnosti. (Complex survey of the Argentine Islands and Galindez Island [maritime Antarctic] as a research area for studying the dynamics of terrestrial vegetation.) Ukrainian Antarctic Journal 17, 73–101, doi: 10.33275/1727-7485.1(17).2018.34. (In Ukrainian with English abstract on the website.)

Parnikoza I.Y., Convey P., Dykyy I., Trokhymets V., Milinevsky G., Inozemtseva D. & Kozeretska I. 2009. Current status of the Antarctic herb tundra formation in the Central Argentine Islands. Global Change Biology 15, 1685–1693, doi: 10.1111/j.1365-2486.2009.01906.x.

Parnikoza I.Y., Miryuta N.Y., Ivanets V.Y. & Dykyi E.O. 2018. Vyznačennja zvedenogo latentnogo pokaznyka prystosovanosti (ZLPP) iz vrahyvannjam vnesku dejakyh pokaznykiv dovkillja dlja popyliacij Deschampsia antarctica Ostrova Galindez (morska Antarktika) v sezon 2017/2018. (Determination of the united quality latent index of adaptability [UQLIA] and contribution of some environmental parameters to it for Deschampsia antarctica populations, Galindez Island [maritime Antarctic] season 2017/2018.) The Bulletin of Vavilov Society of Geneticists and Breeders of Ukraine 16, 190–202, doi: 10.7124/visnyk.utgis.16.2.1057. (In Ukrainian with English abstract on the website.)

Perera-Castro A.V., Waterman M.J., Turnbull J.D., Ashcroft M.B., McKinley E., Watling J.R., Bramley-Alves J., Casanova-Katny A., Zuniga G., Flexas J. & Robinson S.A. 2020. It is hot in the sun: Antarctic mosses have high temperature optima for photosynthesis despite cold climate. Frontiers in Plant Science 11, article no. 1178, doi: 10.3389/fpls.2020.01178.

Saez P., Cavieres L.A., Galmés J., Gil‐Pelegrín E., Peguero‐Pina J.J., Sancho‐Knapik D., Vivas M., Sanhueza C., Ramírez C.F., Rivera B.K., Corcuera L.J. & Bravo L.A. 2018. In situ warming in the Antarctic: effects on growth and photosynthesis in Antarctic vascular plants. New Phytologist 218, 1406–1418, doi: 10.1111/nph.15124.

Savenets M., Pysarenko L. & Pishniak D. 2020. Microclimatic variations of land surface temperature on Galindez Island (western part of the Antarctic Peninsula). Ukrainian Antarctic Journal 2, 3–15, doi: 10.33275/1727-7485.2.2020.648.

Smith R. & Stammerjohn S. 2001. Variations of surface air temperature and sea-ice extent in the western Antarctic Peninsula region. Annals of Glaciology 33, 493–500, doi: 10.3189/172756401781818662.

Tarca G., Guglielmin G., Convey P., Worland M.R. & Cannone N. 2022. Small-scale spatial–temporal variability in snow cover and relationships with vegetation and climate in maritime Antarctica. Catena 208, article no. 105739, doi: 10.1016/j.catena.2021.105739.

Tin T., Fleming Z.L., Hughes K.A., Ainley D.G., Convey P., Moreno C.A., Pfeiffer S., Scott J. & Snape I. 2008. Impacts of local human activities on the Antarctic environment. Antarctic Science 21, 3–33, doi: 10.1017/S0954102009001722.

Turner J., Barrand N.E., Bracegirdle T.J., Convey P., Hodgson D.A., Jarvis M., Jenkins A., Marshall G., Meredith M.P., Roscoe H., Shanklin J., French J., Goosse H., Guglielmin M., Gutt J., Jacobs S., Kennicutt M.C., Masson-Delmotte V., Mayewski P., Navarro F., Robinson S., Scambos T., Sparrow M., Summerhayes C., Speer K. & Klepikov A. 2013. Antarctic climate change and the environment: an update. Polar Record 50, 237–259, doi: 10.1017/S0032247413000296.

Turner J., Colwell S.R., Marshall G.J., Lachlan-Cope T.A., Carleton A.M., Jones P.D., Lagun V., Reid P.A. & Iagovkina S. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology 25, 279–294, doi: 10.1002/joc.1130.

Turner J., Lu H., King J., Marshall G.J., Phillips T., Bannister D. & Colwell S. 2021. Extreme temperatures in the Antarctic. Journal of Climate 34, 2653–2668, doi: 10.1175/JCLI-D-20-0538.1.

Van der Broeke M.R. 2000. The semiannual oscillation and Antarctic climate, part 5: impact on the annual temperature cycle as derived from NCEP/NCAR re-analysis. Climate Dynamics 16, 369–377, doi: 10.1007/s003820050334.

Walther G.-R., Post E., Convey P., Menzel A., Parmesan C., Beebee T., Fromentin J.-M., Hoegh-Guldberg O. & Bairlein F. 2002. Ecological responses to recent climate change. Nature 416, 389–395, doi: 10.1038/416389a.

Walton D.W.H. 1982. The Signy Island terrestrial reference sites: XV. Micro-climate monitoring, 1972–1974. British Antarctic Survey Bulletin 55, 111–126.
How to Cite
Savenets M. V., Pysarenko L., Krakovska S., Parnikoza I., & Pishniak D. (2023). Local temperature near native vascular plants in the Argentine Islands–Kyiv Peninsula region, Antarctic Peninsula: annual variability and approximation using standard meteorological measurements. Polar Research, 42. https://doi.org/10.33265/polar.v42.8339
Research Articles