Identifying invertebrate species in Arctic muskox dung using DNA barcoding

  • Anaïs Dittrich Faculty of Environment and Natural Resources, Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
  • Johannes Lang Clinic for Birds, Reptiles, Amphibians and Fish, Working Group for Wildlife Biology, University of Giessen, Giessen, Germany; and Groupe de Recherche en Ecologie Arctique, Francheville, France https://orcid.org/0000-0002-7387-795X
  • Cornelia Schütz Bundesanstalt für Gewässerkunde, Koblenz, Germany
  • Benoît Sittler Faculty of Environment and Natural Resources, Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany; and Groupe de Recherche en Ecologie Arctique, Francheville, France
  • Bernhard Eitzinger Faculty of Environment and Natural Resources, Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany; iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau, Landau, Germany https://orcid.org/0000-0001-5903-4887
Keywords: Arthropods, eDNA, Greenland, Nematodes, Tundra, Ovibos moschatus

Abstract

The Arctic is undergoing strong environmental changes, affecting species and whole biological communities. To assess the impact on these communities, including their composition and functions, we need more information on their current distribution and biology. In the High-Arctic tundra, dung from animals, such as muskoxen (Ovibos moschatus), is a relatively understudied microhabitat that may be attractive for organisms like dung-feeding insects as well as gastrointestinal parasites. Using a DNA barcoding approach, we examined muskox droppings from two Greenlandic regions for dung-dwelling invertebrates. In 15% of all samples, we found the DNA of insect species in the orders Diptera and Lepidoptera. The saprophagous Diptera colonized dung differently in west versus north-east Greenland and summer versus winter. In addition, we found muskox dung harbouring endoparasitic nematodes in samples from both regions. However, we could not find traces of saprophagous arthropods, such as collembolans and mites, from the soil sphere. Our pilot study sheds a first light on the invertebrates living in this neglected Arctic microhabitat.

Downloads

Download data is not yet available.

References


Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215, 403–410, doi: 10.1016/S0022-2836(05)80360-2.


Andersen-Ranberg E., Barnes C., Rasmussen L., Salgado-Flores A., Grøndahl C., Mosbacher J., Hansen A., Sundset M., Schmidt N. & Sonne C. 2018. A comparative study on the faecal bacterial community and potential zoonotic bacteria of muskoxen (Ovibos moschatus) in northeast Greenland, northwest Greenland and Norway. Microorganisms 6, article no. 76, doi: 10.3390/microorganisms6030076.


Barthelemy H., Stark S., Michelsen A. & Olofsson J. 2018. Urine is an important nitrogen source for plants irrespective of vegetation composition in an Arctic tundra: insights from a 15N-enriched urea tracer experiment. Journal of Ecology 106, 367–378, doi: 10.1111/1365-2745.12820.


Bazely D.R. & Jefferies R.L. 1985. Goose faeces: a source of nitrogen for plant growth in a grazed salt marsh. Journal of Animal Ecology 22, 693–703, doi: 10.2307/2403222.


Beng K.C. & Corlett R.T. 2020. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodiversity and Conservation 29, 2089–2121, doi: 10.1007/s10531-020-01980-0.


Berner L.T., Massey R., Jantz P., Forbes B.C., Macias-Fauria M., Myers-Smith I., Kumpula T., Gauthier G., Andreu-Hayles L., Gaglioti B.V., Burns P., Zetterberg P., D’Arrigo R. & Goetz S.J. 2020. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications 11, article no. 4621, doi: 10.1038/s41467-020-18479-5.


Bezanson G.A., Dovell C.D. & Floate K.D. 2021. Changes in the recovery of insects in pitfall traps associated with the age of cow dung bait fresh or frozen at the time of placement. Bulletin of Entomological Research 111, 340–347, doi: 10.1017/S000748532000070X.


Bird S., Prewer E., Kutz S., Leclerc L.M., Vilaça S.T. & Kyle C.J. 2019. Geography, seasonality, and host-associated population structure influence the fecal microbiome of a genetically depauparate Arctic mammal. Ecology and Evolution 9, 13202–13217, doi: 10.1002/ece3.5768.


Böcher J., Kristensen N.P., Pape T. & Vilhelmsen L. 2015. The Greenland entomofauna: an identification manual of insects, spiders and their allies. Leiden: Brill.


Boertmann D., Forchhammer M., Olesen C.R., Aastrup P. & Thing H. 1992. The Greenland muskox population status 1990. Rangifer 12, 5–12.


Cuyler C., Rowell J., Adamczewski J., Anderson M., Blake J., Bretten T., Brodeur V., Campbell M., Checkley S.L., Cluff H.D., Côté S.D., Davison T., Dumond M., Ford B., Gruzdev A., Gunn A., Jones P., Kutz S., Leclerc L.M., Mallory C., Mavrot F., Mosbacher J.B., Okhlopkov I.M., Reynolds P., Schmidt N.M., Sipko T., Suitor M., Tomaselli M. & Ytrehus B. 2020. Muskox status, recent variation, and uncertain future. Ambio 49, 805–819, doi: 10.1007/s13280-019-01205-x.


Davidson R.K., Amundsen H., Lie N.O., Luyckx K., Robertson L.J., Verocai G.G., Kutz S.J. & Ytrehus B. 2014. Sentinels in a climatic outpost: endoparasites in the introduced muskox (Ovibos moschatus wardi) population of Dovrefjell, Norway. International Journal for Parasitology: Parasites and Wildlife 3, 154–160, doi: 10.1016/j.ijppaw.2014.06.002.


Eitzinger B., Micic A., Körner M., Traugott M. & Scheu S. 2013. Unveiling soil food web links: new PCR assays for detection of prey DNA in the gut of soil arthropod predators. Soil Biology and Biochemistry 57, 943–945, doi: 10.1016/j.soilbio.2012.09.001.


Floate K.D. (ed.) 2011. Arthropods of Canadian grasslands. Vol. 2. Inhabitants of a changing landscape. Waterloo: Biological Survey of Canada.


Folmer O., Black M., Hoeh W., Lutz R. & Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.


Fredskild B. 1996. A phytogrographical study of the vascular plants of west Greenland (62°20′-74 °00′N). Meddelelser om Grønland, Bioscience 45. Copenhagen: Museum Tusculanum Press.


Gauthier G., Hughes R.J., Reed A., Beaulieu J. & Rochefort L. 1995. Effect of grazing by greater snow geese on the production of graminoids at an Arctic site (Bylot Island, NWT, Canada). The Journal of Ecology 83, 653–664, doi: 10.2307/2261633.


Gilg O., Sittler B.B. & Hanski I. 2009. Climate change and cyclic predator–prey population dynamics in the High Arctic. Global Change Biology 15, 2634–2652, doi: 10.1111/j.1365-2486.2009.01927.x.


Hertzberg K. & Leinaas H.P. 1998. Drought stress as a mortality factor in two pairs of sympatric species of collembola at Spitsbergen, Svalbard. Polar Biology 19, 302–306, doi: 10.1007/s003000050250.


Hoberg E.P., Kocan A.A. & Rickard L.G. 2001. Gastrointestinal strongyles in wild ruminants. In W.M. Samuel et al. (eds.): Parasitic diseases of wild mammals. Pp. 193–227. Ames: Iowa State University Press.


Hoberg E.P., Monsen K.J., Kutz S. & Blouin M.S. 1999. Structure, biodiversity, and historical biogeography of nematode faunas in holarctic ruminants: morphological and molecular diagnoses for Teladorsagia boreoarcticus n. sp. (Nematoda: Ostertagiinae), a dimorphic cryptic species in muskoxen (Ovibos moschatus). Journal of Parasitology 85, 910–934, doi: 10.2307/3285831.


Hueffer K., O’Hara T.M. & Follmann E.H. 2011. Adaptation of mammalian host–pathogen interactions in a changing Arctic environment. Acta Veterinaria Scandinavica 53, article no. 17, doi: 10.1186/1751-0147-53-17.


Hunter P.E. & Rosaria R.M.T. 1988. Associations of Mesostigmata with other arthropods. Annual Review of Entomology 33, 393–417, doi: 10.1146/annurev.en.33.010188.002141.


Korsholm H. & Olesen C.R. 1993. Preliminary investigations on the parasite burden and distribution of endoparasite species of muskox (Ovibos moschatus) and caribou (Rangifer tarandus groenlandicus) in west Greenland. Rangifer 13, 185–189, doi: 10.7557/2.13.4.1056.


Kutz S.J., Checkley S., Verocai G.G., Dumond M., Hoberg E.P., Peacock R., Wu J.P., Orsel K., Seegers K., Warren A.L. & Abrams A. 2013. Invasion, establishment, and range expansion of two parasitic nematodes in the Canadian Arctic. Global Change Biology 19, 3254–3262, doi: 10.1111/gcb.12315.


Kutz S.J., Ducrocq J., Verocai G.G., Hoar B.M., Colwell D.D., Beckmen K.B., Polley L., Elkin B.T. & Hoberg E.P. 2012. Parasites in ungulates of Arctic North America and Greenland. A view of contemporary diversity, ecology, and impact in a world under change. In D. Rollinson & S.I. Hay (eds.): Advances in parasitology. Vol. 79. Pp. 99–252. Amsterdam: Elsevier.


Kuusk A.K. & Agustí N. 2008. Group-specific primers for DNA-based detection of springtails (Hexapoda: Collembola) within predator gut contents. Molecular Ecology Resources 8, 678–681, doi: 10.1111/j.1471-8286.2007.02046.x.


Larter N.C. & Nagy J.A. 2004. Seasonal changes in the composition of the diets of Peary caribou and muskoxen on Banks Island. Polar Research 23, 131–140, doi: 10.1111/j.1751-8369.2004.tb00003.x.


Makarova O.L. 2013. Gamasid mites (Parasitiformes, Mesostigmata) of the European Arctic and their distribution patterns. Entomological Review 93, 113–133, doi: 10.1134/S0013873813010156.


Matange K., Tuck J.M. & Keung A.J. 2021. DNA stability: a central design consideration for DNA data storage systems. Nature Communications 12, 1358, doi: 10.1038/s41467-021-21587-5.


Molleman F. 2010. Puddling: from natural history to understanding how it affects fitness. Entomologia Experimentalis et Applicata 134, 107–113, doi: 10.1111/j.1570-7458.2009.00938.x.


Mosbacher J.B., Kristensen D.K., Michelsen A., Stelvig M. & Schmidt N.M. 2016. Quantifying muskox plant biomass removal and spatial relocation of nitrogen in a High Arctic tundra ecosystem. Arctic, Antarctic, and Alpine Research 48, 229–240, doi: 10.1657/AAAR0015-034.


Myers-Smith I.H., Forbes B.C., Wilmking M., Hallinger M., Lantz T., Blok D., Tape K.D., MacIas-Fauria M., Sass-Klaassen U., Lévesque E., Boudreau S., Ropars P., Hermanutz L., Trant A., Collier L.S., Weijers S., Rozema J., Rayback S.A., Schmidt N.M., Schaepman-Strub G., Wipf S., Rixen C., Ménard C.B., Venn S., Goetz S., Andreu-Hayles L., Elmendorf S., Ravolainen V., Welker J., Grogan P., Epstein H.E. & Hik D.S. 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters 6, 045509, doi: 10.1088/1748-9326/6/4/045509.


Ondrejicka D.A., Locke S.A., Morey K., Borisenko A.V. & Hanner R.H. 2014. Status and prospects of DNA barcoding in medically important parasites and vectors. Trends in Parasitology 30, 582–591, doi: 10.1016/j.pt.2014.09.003.


Person B.T., Herzog M.P., Ruess R.W., Sedinger J.S., Anthony R.M. & Babcock C.A. 2003. Feedback dynamics of grazing lawns: coupling vegetation change with animal growth. Oecologia 135, 583–592, doi: 10.1007/s00442-003-1197-4.


Petrova A.D. & Makarova O.L. 1992. Arctoseius tajmyricus, a new species of gamasid mites (Mesostigmata, Aceosejidae) phoretic on trichocerid flies (Diptera). Entomological Review 70(5), 139–142.


Post E., Forchhammer M.C., Bret-Harte M.S., Callaghan T. V, Christensen T.R., Elberling B., Fox A.D., Gilg O., Hik D.S., Høye T.T., Ims R.A., Jeppesen E., Klein D.R., Madsen J., McGuire a D., Rysgaard S., Schindler D.E., Stirling I., Tamstorf M.P., Tyler N.J.C., van der Wal R., Welker J., Wookey P.A., Schmidt N.M. & Aastrup P. 2009. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358, doi: 10.1126/science.1173113.


Prosser S.W.J., Velarde-Aguilar M.G., León-Règagnon V. & Hebert P.D.N. 2013. Advancing nematode barcoding: a primer cocktail for the cytochrome c oxidase subunit I gene from vertebrate parasitic nematodes. Molecular Ecology Resources 13, 1108–1115, doi: 10.1111/1755-0998.12082.


Rantanen M., Karpechko A., Lipponen A., Nordling K., Hyvärinen O., Ruosteenoja K., Vihma T. & Laaksonen A. 2022. The Arctic has warmed four times faster than the globe since 1980. Communications Earth & Environment 3, article no. 168, doi: 10.1038/s43247-022-00498-3.


Ratnasingham S. & Hebert P.D.N. 2007. BOLD: the Barcode of Life Data System (www.barcodinglife.org). Molecular Ecology Notes 7, 355–364, doi: 10.1111/j.1471-8286.2007.01678.x.


Richardson M.J. 2001. Diversity and occurrence of coprophilous fungi. Mycological Research 105, 387–402, doi: 10.1017/S0953756201003884.


Sigsgaard E.E., Olsen K., Hansen M.D.D., Hansen O.L.P., Høye T.T., Svenning J.C. & Thomsen P.F. 2021. Environmental DNA metabarcoding of cow dung reveals taxonomic and functional diversity of invertebrate assemblages. Molecular Ecology 30, 3374–3389, doi: 10.1111/mec.15734.


Sladecek F.X.J., Dötterl S., Schäffler I., Segar S.T. & Konvicka M. 2021. Succession of dung-inhabiting beetles and flies reflects the succession of dung-emitted volatile compounds. Journal of Chemical Ecology 47, 433–443, doi: 10.1007/s10886-021-01266-x.


Sørensen L.I.L., Holmstrup M., Maraldo K., Christensen S. & Christensen B. 2005. Soil fauna communities and microbial respiration in High Arctic tundra soils at Zackenberg, northeast Greenland. Polar Biology 29, 189–195, doi: 10.1007/s00300-005-0038-9.


Sorokina V.S. 2017. The Muscoidea flies (Diptera) of the northern territories of Russia. Eurasian Entomological Journal 16, 44–56, doi: 10.15298/euroasentj.16.1.08.


Stear M.J., Bishop S.C., Henderson N.G. & Scott I. 2003. A key mechanism of pathogenesis in sheep infected with the nematode Teladorsagia circumcincta. Animal Health Research Reviews 4, 45–52, doi: 10.1079/AHRR200351.


Steele J., Orsel K., Cuyler C., Hoberg E.P., Schmidt N.M. & Kutz S.J. 2013. Divergent parasite faunas in adjacent populations of west Greenland caribou: natural and anthropogenic influences on diversity. International Journal for Parasitology: Parasites and Wildlife 2, 197–202, doi: 10.1016/j.ijppaw.2013.05.002.


Strickler K.M., Fremier A.K. & Goldberg C.S. 2015. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation 183, 85–92, doi: 10.1016/j.biocon.2014.11.038.


Suárez V.H., Lifschitz A.L., Sallovitz J.M. & Lanusse C.E. 2009. Effects of faecal residues of moxidectin and doramectin on the activity of arthropods in cattle dung. Ecotoxicology and Environmental Safety 72, 1551–1558, doi: 10.1016/j.ecoenv.2007.11.009.


Sutcliffe A.J., Blake W. Jr., Baker A., Blackith R., Ferry B., Hamilton P., Longton R., Marley N., Miller F.L., Pegler D., Smith K. & Wanless F. 2000. Biological activity on a decaying caribou antler at Cape Herschel, Ellesmere Island, Nunavut, High Arctic Canada. Polar Record 36, 233–246, doi: 10.1017/S0032247400016491.


Thomas D.N. (ed.) 2021. Arctic ecology. Oxford: Wiley-Blackwell.


van der Wal R., Bardgett R.D., Harrison K.A. & Stien A. 2004. Vertebrate herbivores and ecosystem control: cascading effects of faeces on tundra ecosystems. Ecography 27, 242–252, doi: 10.1111/j.0906-7590.2004.03688.x.


van der Wal R., Irvine J., Stien A., Shepherd N. & Albon S.D. 2000. Faecal avoidance and the risk of infection by nematodes in a natural population of reindeer. Oecologia 124, 19–25, doi: 10.1007/s004420050020.


van Dijk J. & Morgan E.R. 2011. The influence of water on the migration of infective trichostrongyloid larvae onto grass. Parasitology 138, 780–788, doi: 10.1017/S0031182011000308.


Zeale M.R.K., Butlin R.K., Barker G.L.A., Lees D.C. & Jones G. 2011. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Molecular Ecology Resources 11, 236–244, doi: 10.1111/j.1755-0998.2010.02920.x.


Zielińska S., Kidawa D., Stempniewicz L., Łoś M. & Łoś J.M. 2017. Environmental DNA as a valuable and unique source of information about ecological networks in Arctic terrestrial ecosystems. Environmental Reviews 25, 282–291, doi: 10.1139/er-2016-0060.
Published
2023-12-08
How to Cite
Dittrich A., Lang J., Schütz C., Sittler B., & Eitzinger B. (2023). Identifying invertebrate species in Arctic muskox dung using DNA barcoding. Polar Research, 42. https://doi.org/10.33265/polar.v42.9017
Section
Research Articles