Increases in graminoids after three decades of change in the High Arctic

  • James A. Schaefer Department of Biology, Trent University, Peterborough, ON, Canada
Keywords: Climate change, permanent plots, tundra, Dryas integrifolia, Polygonum viviparum, Saxifraga oppositifolia

Abstract

Climate change portends serious implications for Arctic vegetation. Understanding these effects is likely to be enhanced with long-term observations from permanent plots. I evaluated three decades of change in tundra vegetation from 80 permanent plots on south-eastern Victoria Island, Nunavut, Canada. I compared baseline (1991 and 1992) and contemporary (2019 and 2022) periods in the cover and frequency of graminoids, mosses and common species of forbs, shrubs and lichens. I found substantial shifts in cover of several species and growth forms—an increase in graminoids, decreases in Dryas integrifolia, Polygonum viviparum and Saxifraga oppositifolia, and marginally significant declines in mosses and Cassiope tetragona, but no detectable changes in other groups. The decline in Dryas integrifolia was more pronounced at lower elevations and was noticeable as patches of apparent mortality, inside the plots and elsewhere. The shifts in species abundance were not significantly correlated with each other, nor with changes in soil depth. These changes, manifest as communities with more abundant graminoids, are consistent with expected climate change effects in colder regions of the Arctic. Repeated observations of permanent plots can aid in detecting and understanding long-term ecological change.

Downloads

Download data is not yet available.

References


Berner L.T., Massey R., Jantz P., Forbes B.C., Macias-Fauria M., Myers-Smith I., Kumpula T., Gauthier G., Andreu-Hayles L., Gaglioti B.V., Burns P., Zetterberg P., D’Arrigo R. & Goetz S.J. 2020. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications 11, article no. 4621, doi: 10.1038/s41467-020-18479-5.


Bonham C.D. 2013. Measurements for terrestrial vegetation. 2nd edn. Oxford: John Wiley & Sons.


Bjerke J.W., Treharne R., Vikhamar-Schuler D., Karlsen S.R., Ravolainen V., Bokhorst S., Phoenix G.K., Bochenek Z. & Tømmervik H. 2017. Understanding the drivers of extensive plant damage in boreal and Arctic ecosystems: insights from field surveys in the aftermath of damage. Science of the Total Environment 599–600, 1965–1976, doi: 10.1016/j.scitotenv.2017.05.050.


Bjorkman A.D., García Criado M., Myers-Smith I.H., Ravolainen V., Jónsdóttir I.S., Westergaard K.B., Lawler J.P., Aronsson M., Bennett B., Gardfjell H., Heiðmarsson S., Stewart L. & Normand S. 2020. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 49, 678–692, doi: 10.1007/s13280-019-01161-6.


Buchkowski R.W., Morris D.W., Halliday W.D., Dupuch A.L., Morrissette-Boileau C. & Boudreau S. 2020. Warmer temperatures promote shrub radial growth but not cover in the central Canadian Arctic. Arctic, Antarctic, and Alpine Research 52, 582–595, doi: 10.1080/15230430.2020.1824558.


Bush E. & Lemmen D.S. 2019. Canada’s changing climate report. Ottawa: Government of Canada.


Collins C.G., Elmendorf S.C., Hollister R.D., Henry G.H.R., Clark K., Bjorkman A.D., Myers-Smith I.H., Prevey J.S., Ashton I.W., Assmann J.J., Alatalo J.M., Carbognani M., Chisholm C., Cooper E.J., Forrester C., Jonsdottir I.S., Klanderud K., Kopp C.W., Livensperger C., Mauritz M., May J.L., Molau U., Oberbauer S.F., Ogburn E., Panchen Z.A., Petraglia A., Post E., Rixen C., Rodenhizer H., Schuur E.A.G., Semenchuk P., Smith J.G., Steltzer H., Totland O., Walker M.D., Welker J.M. & Suding K.N. 2021. Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nature Communications 12, article no. 3442, doi: 10.1038/s41467-021-23841-2.


COSEWIC. 2017 COSEWIC assessment and status report on the caribou (Rangifer tarandus) Dolphin and Union population in Canada 2017. Committee on the Status of Endangered Wildlife in Canada. Accessed on the internet at https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/cosewic-assessments-status-reports/caribou-dolphin-union-2017.html on 18 July 2023.


Elmendorf S.C., Henry G.H.R., Hollister R.D., Björk R.G., Bjorkman A.D., Callaghan T.V., Collier L.S., Cooper E.J., Cornelissen J.H.C., Day T.A., Fosaa A.M., Gould W.A., Grétarsdóttir J., Harte J., Hermanutz L., Hik D.S., Hofgaard A., Jarrad F., Jónsdóttir I.S., Keuper F., Klanderud K., Klein J.A., Koh S., Kudo G., Lang S.I., Loewen V., May J.L., Mercado J., Michelsen A., Molau U., Myers-Smith I.H., Oberbauer S.F., Pieper S., Post E., Rixen C., Robinson C.H., Schmidt N.M., Shaver G.R., Stenström A., Tolvanen A., Totland Ø., Troxler T., Wahren C.H., Webber P.J., Welker J.M. & Wookey P.A. 2012. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecology Letters 15, 164–175, doi: 10.1111/j.1461-0248.2011.01716.x.


Elmendorf S.C., Henry G.H.R., Hollister R.D., Björk R.G., Boulanger-Lapointe N.M., Cooper E.J., Cornelissen J.H.C., Day T.A., Dorrepaal E., Elumeeva T.G., Gill M., Gould W.A., Harte J., Hik D.S., Hofgaard A., Johnson D.R., Johnstone J.F., Jónsdóttir I.S., Jorgenson J.C., Klanderud K., Klein J.A., Koh S., Kudo G., Lara M., Lévesque E., Magnússon B., May J.L., Mercado-Díaz J.A., Michelsen A., Molau U., Myers-Smith I.H., Oberbauer S.F., Onipchenko V.G., Rixen C., Martin Schmidt N., Shaver G.R., Spasojevic M.J., Þórhallsdóttir Þ.E., Tolvanen A., Troxler T., Tweedie C.E., Villareal S., Wahren C.H., Walker X., Webber P.J., Welker J.M. & Wipf S. 2012. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change 2, 453–457, doi: 10.1038/nclimate1465.


Graae B.J., Ejrnaes R., Marchand F.L., Milbau A., Shevtsova A., Beyens L. & Nijs I. 2009. The effect of an early-season short-term heat pulse on plant recruitment in the Arctic. Polar Biology 32, 1117–1126, doi: 10.1007/s00300-009-0608-3.


Graham R.M., Cohen L., Petty A.A., Boisvert L.N., Rinke A., Hudson S.R., Nicolaus M. & Granskog M.A. 2017. Increasing frequency and duration of Arctic winter warming events. Geophysical Research Letters 44, 6974–6983, doi: 10.1002/2017GL073395.


Hammer Ø., Harper D.A. & Ryan P.D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, article no. 1.


Harris J.A., Hollister R.D., Botting T.F., Tweedie C.E., Betway K.R., May J.L., Barrett R.T.S., Leibig J.A., Christoffersen H.L., Vargas S.A., Orejel M. & Fuson T.L. 2021. Understanding the climate impacts on decadal vegetation change in northern Alaska. Arctic Science 8, 878–898, doi: 10.1139/as-2020-0050.


Heijmans M.M.P.D., Magnússon R.Í., Lara M.J., Frost G.V., Myers-Smith I.H., van Huissteden J., Jorgenson M.T., Fedorov A.N., Epstein H.E., Lawrence D.M. & Limpens J. 2022. Tundra vegetation change and impacts on permafrost. Nature Reviews on Earth and Environment 3, 68–84, doi: 10.1038/s43017-021-00233-0.


Hill G.B. & Henry G.H.R. 2011. Responses of High Arctic wet sedge tundra to climate warming since 1980. Global Change Biology 17, 276–287, doi: 10.1111/j.1365-2486.2010.02244.x.


Hobbie S.E. 1996. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs 66, 503–522, doi: 10.2307/2963492.


Jónsdóttir I.S., Halbritter A.H., Christiansen C.T., Althuizen I.H.J., Haugum S.V., Henn J.J., Björnsdóttir K., Maitner B.S., Malhi Y., Michaletz S.T., Roos R.E., Klanderud K., Lee H., Enquist B.J. & Vandvik V. 2023. Intraspecific trait variability is a key feature underlying high Arctic plant community resistance to climate warming. Ecological Monographs 93, e1555, doi: 10.1002/ecm.1555.


Jorgenson J.C., Raynolds M.K., Reynolds J.H. & Benson A.M. 2015. Twenty-five year record of changes in plant cover on tundra of northeastern Alaska. Arctic, Antarctic, and Alpine Research 47, 785–806, doi: 10.1657/AAAR0014-097.


Ju J. & Masek J.G. 2016. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sensing of Environment 176, 1–16, doi: 10.1016/j.rse.2016.01.001.


Kapfer J. & Grytnes J.A. 2017. Large climate change, large effect? Vegetation changes over the past century in the European High Arctic. Applied Vegetation Science 20, 204–214, doi: 10.1111/avsc.12280.


Kenkel N.C. & Orloci L. 1986. Applying metric and nonmetric multidimensional-scaling to ecological-studies—some new results. Ecology 67, 919–928, doi: 10.2307/1939814.


Kim K., Lee J., Ju H., Jung J.Y., Chae N., Chi J., Kwon M.J., Lee B.Y., Wagner J. & Kim J.S. 2021. Time-lapse electrical resistivity tomography and ground penetrating radar mapping of the active layer of permafrost across a snow fence in Cambridge Bay, Nunavut Territory, Canada: correlation interpretation using vegetation and meteorological data. Geosciences Journal 25, 877–890, doi: 10.1007/s12303-021-0021-7.


Kobiv Y. 2017. Response of rare alpine plant species to climate change in the Ukrainian Carpathians. Folia Geobotanica 52, 217–226, doi: 10.1007/s12224-016-9270-z.


Lam H.M., Geldsetzer T., Howell S.E.L. & Yackel J. 2022. Snow depth on sea ice and on land in the Canadian Arctic from long-term observations. Atmosphere–Ocean 2022, 217–233, doi: 10.1080/07055900.2022.2060178.


Lindenmayer D.B., Burns E.L., Tennant P., Dickman C.R., Green P.T., Keith D.A., Metcalfe D.J., Russell-Smith J., Wardle G.M., Williams D., Bossard K., de Lacey C., Hanigan I., Bull C.M., Gillespie G., Hobbs R.J., Krebs C.J., Likens G.E., Porter J. & Vardon M. 2015. Contemplating the future: acting now on long-term monitoring to answer 2050’s questions. Austral Ecology 40, 213–224, doi: 10.1111/aec.12207.


Marchand F.L., Kockelbergh F., van de Vijver B., Beyens L. & Nijs I. 2006. Are heat and cold resistance of Arctic species affected by successive extreme temperature events? New Phytologist 170, 291–300, doi: 10.1111/j.1469-8137.2006.01659.x.


Mihoub J.B., Henle K., Titeux N., Brotons L.S., Brummitt N.A. & Schmeller D.S. 2017. Setting temporal baselines for biodiversity: the limits of available monitoring data for capturing the full impact of anthropogenic pressures. Scientific Reports 7, article no. 41591, doi: 10.1038/srep41591.


Myers-Smith I.H., Forbes B.C., Wilmking M., Hallinger M., Lantz T., Blok D., Tape K.D., Macias-Fauria M., Sass-Klaassen U., Lévesque E., Boudreau S., Ropars P., Hermanutz L., Trant A., Collier L.S., Weijers S., Rozema J., Rayback S.A., Schmidt N.M., Schaepman-Strub G., Wipf S., Rixen C., Menard C.B., Venn S., Goetz S., Andreu-Hayles L., Elmendorf S., Ravolainen V., Welker J., Grogan P., Epstein H.E. & Hik D.S. 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environmental Research Letters 6, article no. 045509, doi: 10.1088/1748-9326/6/4/045509.


Myers-Smith I.H., Kerby J.T., Phoenix G.K., Bjerke J.W., Epstein H.E., Assmann J.J., John C., Andreu-Hayles L., Angers-Blondin S., Beck P.S.A., Berner L.T., Bhatt U.S., Bjorkman A.D., Blok D., Bryn A., Christiansen C.T., Cornelissen J.H., Cunliffe A.M., Elmendorf S.C., Forbes B.C., Goetz S.J., Hollister R.D., de Jong R., Loranty M.M., Macias-Fauria M., Maseyk K., Normand S., Olofsson J., Parker T.C., Parmentier F.J., Post E., Schaepman-Strub G., Stordal F., Sullivan P.F., Thomas H.J.D., Tømmervik H., Treharne R., Tweedie C.E., Walker D.A., Wilmking M. & Wipf S. 2020. Complexity revealed in the greening of the Arctic. Nature Climate Change 10, 106–117, doi: 10.1038/s41558-019-0688-1.


Opala-Owczarek M., Piroznikow E., Owczarek P., Szymanski W., Luks B., Kepski D., Szymanowski M., Wojtun B. & Migala K. 2018. The influence of abiotic factors on the growth of two vascular plant species (Saxifraga oppositifolia and Salix polaris) in the High Arctic. Catena 163, 219–232, doi: 10.1016/j.catena.2017.12.018.


Panchen Z.A. 2016. The impact of climate change on flowering and fruiting phenology of Arctic plants in Nunavut, Canada. PhD thesis, Carleton University, Ottawa, doi: 10.22215/etd/2016-11673.


Panchen Z.A. 2022. Plant reproductive phenology along an elevation gradient in the extreme environment of the Canadian High-Arctic. Plant Ecology and Diversity 15, 213–226, doi: 10.1080/17550874.2022.2147804.


Panchen Z.A., Frei E.R. & Henry G.H.R. 2021. Increased Arctic climate extremes constrain expected higher plant reproductive success in a warmer climate. Arctic Science 8, 680–699, doi: 10.1139/as-2020-0045.


Panchen Z.A. & Gorelick R. 2015. Flowering and fruiting responses to climate change of two Arctic plant species, purple saxifrage (Saxifraga oppositifolia) and mountain avens (Dryas integrifolia). Arctic Science 1, 45–58, doi: 10.1139/as-2015-0016.


Pattison R.R., Jorgenson J.C., Raynolds M.K. & Welker J.M. 2015. Trends in NDVI and tundra community composition in the Arctic of NE Alaska between 1984 and 2009. Ecosystems 18, 707–719, doi: 10.1007/s10021-015-9858-9.


Phoenix G.K. & Bjerke J.W. 2016. Arctic browning: extreme events and trends reversing Arctic greening. Global Change Biology 22, 2960–2962, doi: 10.1111/gcb.13261.


Prach K., Košnar J., Klimešová J. & Hais M. 2010. High Arctic vegetation after 70 years: a repeated analysis from Svalbard. Polar Biology, 33, 635–639, doi: 10.1007/s00300-009-0739-6.


Rantanen M., Karpechko A.Y., Lipponen A., Nordling K., Hyvärinen O., Ruosteenoja K., Vihma T. & Laaksonen A. 2022. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment 3, 168, doi: 10.1038/s43247-022-00498-3.


Robinson S.V.J. & Henry G.H.R. 2018. High Arctic plants show independent responses to pollination and experimental warming. Botany 96, 385–396, doi: 10.1139/cjb-2017-0200.


Schaefer J.A. & Messier F. 1994. Composition and spatial structure of plant communities on southeastern Victoria Island, Arctic Canada. Canadian Journal of Botany 72, 1264–1272, doi: 10.1139/b94-154.


Schaefer J.A. & Messier F. 1995a. Habitat selection as a hierarchy: the spatial scales of winter foraging by muskoxen. Ecography 18, 333–344, doi: 10.1111/j.1600-0587.1995.tb00136.x.


Schaefer J.A. & Messier F. 1995b. Scale-dependent correlations of Arctic vegetation and snow cover. Arctic and Alpine Research 27, 38–43, doi: 10.1080/00040851.1995.12003095.


Smith S.L., Chartrand J., Duchesne C. & Ednie M. 2017. Report on 2016 field activities and collection of ground thermal and active layer data in the Mackenzie Corridor, Northwest Territories. Open File 8303. Ottawa: Geological Survey of Canada.


Stenström M., Gugerli F. & Henry G.H.R. 1997. Response of Saxifraga oppositifolia L. to simulated climate change at three contrasting latitudes. Global Change Biology 3, 44–54, doi: 10.1111/j.1365-2486.1997.gcb144.x.


Tomaselli M., Kutz S., Gerlach C. & Checkley S. 2018. Local knowledge to enhance wildlife population health surveillance: conserving muskoxen and caribou in the Canadian Arctic. Biological Conservation 217, 337–348, doi: 10.1016/j.biocon.2017.11.010.


Walker D.A., Raynolds M.K., Daniëls F.J.A., Einarsson E., Elvebakk A., Gould W.A., Katenin A.E., Kholod S.S., Markon C.J., Melnikov E.S., Moskalenko N.G., Talbot S.S., Yurtsev B.A. & the Other Members of the CAVM Team. 2005. The circumpolar Arctic vegetation map. Journal of Vegetation Science 16, 267–282, doi: 10.1111/j.1654-1103.2005.tb02365.x.


Walsh J.E., Ballinger T.J., Euskirchen E.S., Hanna E., Mård J., Overland J.E., Tangen H. & Vihma T. 2020. Extreme weather and climate events in northern areas: a review. Earth-Science Reviews 209, 103324, doi: 10.1016/j.earscirev.2020.103324.


Zika P.F. 1993. Historical species loss in the alpine zone of Camels-Hump, Vermont. Bulletin of the Torrey Botanical Club 120, 73–75, doi: 10.2307/2996666.
Published
2023-12-08
How to Cite
Schaefer J. A. (2023). Increases in graminoids after three decades of change in the High Arctic. Polar Research, 42. https://doi.org/10.33265/polar.v42.9560
Section
Research Articles