Drivers of spatio-temporal variations in summer surface water temperatures of Arctic Fennoscandian lakes (2000–21)

  • Mingzhen Zhang Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
  • Matti Leppäranta Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland
  • Atte Korhola Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; and Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
  • Nina Kirchner Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden; and Department of Physical Geography, Stockholm University, Stockholm, Sweden
  • Annika Granebeck Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden; and Department of Physical Geography, Stockholm University, Stockholm, Sweden
  • Frederik Schenk Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden; Department of Geological Sciences, Stockholm University, Stockholm, Sweden; and Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
  • Kaarina Weckström Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; and Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
  • Maija Heikkilä Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; and Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
  • Jan Weckström Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; and Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
Keywords: Climate change, Arctic lakes, water temperature, topography, geochemistry, morphometry

Abstract

The Arctic region is covered with numerous small lakes whose ecosystems are vulnerable to current climate warming and resultant changes in water temperature, ice-cover duration and lake levels. Data on thermal features of these lakes are sparse, which hinders our understanding of the possible ecosystem impacts of the warming climate and climate feedbacks at larger spatial scales. We investigated spatial–temporal variations of lake surface water temperatures (LSWT) in 12 Arctic lakes in north-west Finnish Lapland and explored the predominant drivers of LSWTs by continuous year-round observations. The lake surface temperature data were recorded using thermistors at bi-hourly resolution during the years 2000, 2007–08 and 2019–2021. A large regional heterogeneity was observed in the timing of the maximum and minimum LSWTs and the overall patterns of the annual cycle. Our results reveal that July air temperature, maximum lake depth and altitude explained most of the variance in the summer LSWT (> 85%). The remaining variance was related to geographic location (longitude and latitude), lake morphometric features, such as lake area and catchment area, and certain physico-chemical characteristics, such as Secchi depth and dissolved organic carbon content. Our results provide new insights into thermal responses of different types of small Arctic lakes to climate change.

Downloads

Download data is not yet available.

References


Aalto J., Pirinen P. & Jylhä K. 2016. New gridded daily climatology of Finland: permutation-based uncertainty estimates and temporal trends in climate. Journal of Geophysical Research—Atmospheres 121, 3807–3823, doi: 10.1002/2015jd024651.


Adrian R., O’Reilly C.M., Zagarese H., Baines S.B., Hessen D.O., Keller W., Livingstone D.M., Sommaruga R., Straile D., Donk E.V., Weyhenmeyer G.A. & Winderl M. 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54, 2283–2297, doi: 10.4319/lo.2009.54.6_part_2.2283.


Aho K., Derryberry D. & Peterson T. 2014. Model selection for ecologists the worldviews of AIC and BIC. Ecology 95, 631–636, doi: 10.1890/13-1452.1.


Anderson E.J., Stow C.A., Gronewold A.D., Mason L.A., McCormick M.J., Qian S.S., Ruberg S.A., Beadle K., Constant S.A. & Hawley N. 2021. Seasonal overturn and stratification changes drive deep-water warming in one of Earth’s largest lakes. Nature Communication 12, article no. 1688, doi: 10.1038/s41467-021-21971-1.


Arvola L., George G., Livingstone D.M., Järvinen M., Blenckner T., Dokulil M.T., Jennings E., Aonghusa C.N., Nõges P., Nõges T. & Weyhenmeyer G.A. 2009. The impact of the changing climate on the thermal characteristics of lakes. In G. George (ed.): The impact of climate change on European lakes. Pp. 85–101. Dordrecht: Springer.


Atkinson D. 1994. Temperature and organism size—a biological law for ectotherms? Advances in Ecological Research 25, 1–58, doi: 10.1016/S0065-2504(08)60212-3.


Bates D., Mächler M., Bolker B. & Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 1–48, doi: 10.18637/jss.v067.i01.


Benson B.J., Lenters J.D., Magnuson J.J., Stubbs M., Kratz T.K., Dillon P.J., Hecky R.E. & Lathrop R.C. 2000. Regional coherence of climatic and lake thermal variables of four lake districts in the Upper Great Lakes region of North America. Freshwater Biology 43, 517–527, doi: 10.1046/j.1365–2427.2000.00572.x.


Blanchet C.C., Arzel C., Davranche A., Kahilainen K.K., Secondi J., Taipale S., Lindberg H., Loehr J., Manninen-Johansen S., Sundell J., Maanan M. & Nummi P. 2022. Ecology and extent of freshwater browning—what we know and what should be studied next in the context of global change. Science of the Total Environment 812, article no. 152420, doi: 10.1016/j.scitotenv.2021.152420.


Boehrer B. & Schultze M. 2008. Stratification of lakes. Reviews of Geophysics 46, 1–27, doi: 10.1029/2006rg000210.


Brezonik P.L. 1978. Effect of organic color and turbidity of Secchi disk transparency. Journal of the Fisheries Research Board of Canada 35, 1410–1416, doi: 10.1139/f78-222.


Bright C.E., Mager S.M. & Horton S.L. 2018. Predicting suspended sediment concentration from nephelometric turbidity in organic-rich waters. River Research and Applications 34, 640–648, doi: 10.1002/rra.3305.


Butterwick C., Heaney S.I. & Talling J.F. 2004. Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshwater Biology 50, 291–300, doi: 10.1111/j.1365-2427.2004.01317.x.


Cheng B., Cheng Y., Vihma T., Kontu A., Zheng F., Lemmetyinen J., Qiu Y. & Pulliainen J. 2021. Inter-annual variation in lake ice composition in the European Arctic: observations based on high-resolution thermistor strings. Earth System Science Data 13, 3967–3978, doi: 10.5194/essd-13-3967-2021.


Downing J.A., Prairie Y.T., Cole J.J., Duarte C.M., Tranvik L.J., Striegl R.G., McDowell W.H., Kortelainen P., Caraco N.F., Melack J.M. & Middelburg J.J. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51, 2388–2397, doi: 10.4319/lo.2006.51.5.2388.


Dyba K., Ermida S., Ptak M., Piekarczyk J. & Sojka M. 2022. Evaluation of methods for estimating lake surface water temperature using Landsat 8. Remote Sensing 14, article no. 3839, doi: 10.3390/rs14153839.


Edmundson J.A. & Mazumder A. 2002. Regional and hierarchical perspectives of thermal regimes in Subarctic, Alaskan lakes. Freshwater Biology 47, 1–17, doi: 10.1046/j.1365-2427.2002.00775.x.


Fink G., Schmid M., Wahl B., Wolf T. & Wüest A. 2014. Heat flux modifications related to climate-induced warming of large European lakes. Water Resources Research 50, 2072–2085, doi: 10.1002/2013wr014448.


Finstad A.G., Andersen T., Larsen S., Tominaga K., Blumentrath S., Wit H.A., Tommervik H. & Hessen D.O. 2016. From greening to browning: catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes. Scientific Reports 6, article no. 31944, doi: 10.1038/srep31944.


Frost G.V., Macander M.J., Bhatt U.S., Berner L.T., Bjerke J.W., Epstein H.E., Forbes B.C., Lara M.J., Magnússon R.Í., Montesano P.M., Phoenix G.K., Serbin S.P., Tømmervik H., Waigl C., Walker D.A. & Yang D. 2023. Arctic report card 2023. Tundra greenness. NOAA Technical Report OAR ARC 23-09. Silver Spring, MD: National Oceanic and Atmospheric Administration. doi: 10.25923/s86a-jn24.


Gottfried M., Pauli H., Futschik A., Akhalkatsi M., Barančok P., Benito Alonso J.L., Coldea G., Dick J., Erschbamer B., Fernández Calzado M.A.R., Kazakis G., Krajči J., Larsson P., Mallaun M., Michelsen O., Moiseev D., Moiseev P., Molau U., Merzouki A., Nagy L., Nakhutsrishvili G., Pedersen B., Pelino G., Puscas M., Rossi G., Stanisci A., Theurillat J.-P., Tomaselli M., Villar L., Vittoz P., Vogiatzakis I. & Grabherr G. 2012. Continent-wide response of mountain vegetation to climate change. Nature Climate Change 2, 111–115, doi: 10.1038/nclimate1329.


Gunst R.F. & Webster J.T. 1975. Regression analysis and problems of multicollinearity. Communications in Statistics 4, 277–292, doi: 10.1080/03610927308827246.


Håkanson L. 2002. Lumbering operations, lake humification and consequences for the structure of the lake foodweb: a case study using the LakeWeb-model for Lake Stora Kröntjärn, Sweden. Aquatic Sciences 64, 185–197, doi: 10.1007/s00027-002-8066-9.


Hayden B., Harrod C., Thomas S.M., Eloranta A.P., Myllykangas J.P., Siwertsson A., Praebel K., Knudsen R., Amundsen P.A. & Kahilainen K.K. 2019. From clear lakes to murky waters—tracing the functional response of high-latitude lake communities to concurrent “greening” and “browning”. Ecology Letter 22, 807–816, doi: 10.1111/ele.13238.


Hinkel K.M., Frohn R.C., Nelson F.E., Eisner W.R. & Beck R.A. 2005. Morphometric and spatial analysis of thaw lakes and drained thaw lake basins in the western Arctic Coastal Plain, Alaska. Permafrost and Periglacial Processes 16, 327–341, doi: 10.1002/ppp.532.


Huang Y., Liu H., Hinkel K., Yu B., Beck R. & Wu J. 2017. Analysis of thermal structure of Arctic lakes at local and regional scales using in-situ and multidate Landsat-8 data. Water Resources Research 53, 9642–9658, doi: 10.1002/2017wr021335.


Jokinen P., Pirinen P., Kaukoranta J.-P., Kangas A., Alenius P., Eriksson P., Johansson M. & Wilkman S. 2021. Tilastoja Suomen ilmatosta ja merestä 1991–2020. (Statistics on Finland’s atmosphere and sea, 1991–2020.) Reports 2021:8. Helsinki: Finnish Meteorological Institute.


Kassambara A. 2017. Practical guide to principal component methods in R. Marseille: STHDA.


Kirchner N., Kuttenkeuler J., Rosqvist G., Hancke M., Granebeck A., Weckström J., Weckström K., Schenk F., Korhola A. & Eriksson P. 2021. A first continuous three-year temperature record from the dimictic Arctic–alpine Lake Tarfala, northern Sweden. Arctic, Antarctic, and Alpine Research 53, 69–79, doi: 10.1080/15230430.2021.1886577.


Kraemer B.M., Anneville O., Chandra S., Dix M., Kuusisto E., Livingstone D.M., Rimmer A., Schladow S.G., Silow E., Sitoki L.M., Tamatamah R., Vadeboncoeur Y. & McIntyre P.B. 2015. Morphometry and average temperature affect lake stratification responses to climate change. Geophysical Research Letters 42, 4981–4988, doi: 10.1002/2015gl064097.


Kraemer B.M., Chandra S., Dell A.I., Dix M., Kuusisto E., Livingstone D.M., Schladow S.G., Silow E., Sitoki L.M., Tamatamah R. & McIntyre P.B. 2017. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism. Global Change Biology 23, 1881–1890, doi: 10.1111/gcb.13459.


Laaksonen K. 1976. The dependence of mean air temperatures upon latitude and altitude in Fennoscandia (1921–1950). 3rd edn. Helsinki: Department of Geography, University of Helsinki.


Lei R., Leppäranta M., Cheng B., Heil P. & Li Z. 2012. Changes in ice-season characteristics of a European Arctic lake from 1964 to 2008. Climatic Change 115, 725–739, doi: 10.1007/s10584-012-0489-2.


Leppäranta M., Lindgren E. & Shirasawa K. 2017. The heat budget of Lake Kilpisjärvi in the Arctic tundra. Hydrology Research 48, 969–980, doi: 10.2166/nh.2016.171.


Leppäranta M. & Wen L. 2022. Ice phenology in Eurasian lakes over spatial location and altitude. Water 14, article no. 1037, doi: 10.3390/w14071037.


Lewis J., Eads R. & Klein R. 2007. Comparisons of turbidity data collected with different instruments. California Department of Forestry and Fire Protection and USDA Forest Service–Pacific Southwest Research Station. Accessed on the internet at https://water.usgs.gov/fisp/docs/Tprobe_final_report.pdf on 19 June 2024.


Lewis W. 1983. A revised classification of lakes based on mixing. Canadian Journal of Fisheries and Aquatic Sciences 40, 1779–1787, doi: 10.1139/f83-207.


Livingstone D.M. 2005. Altitude-dependent differences in the primary physical response of mountain lakes to climatic forcing. Limnology and Oceanography 50, 1313–1325, doi: 10.4319/lo.2005.50.4.1313.


Magee M.R. & Wu C.H. 2017. Response of water temperatures and stratification to changing climate in three lakes with different morphometry. Hydrology and Earth System Sciences 21, 6253–6274, doi: 10.5194/hess-21-6253-2017.


Meteyard L. & Davies R.A.I. 2020. Best practice guidance for linear mixed-effects models in psychological science. Journal of Memory and Language 112, article no. 104092, doi: 10.1016/j.jml.2020.104092.


Molot L.A. & Dillon P.J. 1997. Colour–mass balances and colour–dissolved organic carbon relationships in lakes and streams in central Ontario. Canadian Journal of Fisheries and Aquatic Sciences 54, 2789–2795, doi: 10.1139/cjfas-54-12-2789.


Noori R., Bateni S.M., Saari M., Almazroui M. & Torabi Haghighi A. 2022. Strong warming rates in the surface and bottom layers of a boreal lake: results from approximately six decades of measurements (1964–2020). Earth and Space Science 9, article no. e2021EA001973, doi: 10.1029/2021ea001973.


O’Reilly C.M., Sharma S., Gray D.K., Hampton S.E., Read J.S., Rowley R.J., Schneider P., Lenters J.D., McIntyre P.B., Kraemer B.M., Weyhenmeyer G.A., Straile D., Dong B., Adrian R., Allan M.G., Anneville O., Arvola L., Austin J., Bailey J.L., Baron J.S., Brookes J.D., Eyto E., Dokulil M.T., Hamilton D.P., Havens K., Hetherington A.L., Higgins S.N., Hook S., Izmest’eva L.R., Joehnk K.D., Kangur K., Kasprzak P., Kumagai M., Kuusisto E., Leshkevich G., Livingstone D.M., MacIntyre S., May L., Melack J.M., Mueller-Navarra D.C., Naumenko M., Noges P., Noges T., North R.P., Plisnier P.D., Rigosi A., Rimmer A., Rogora M., Rudstam L.G., Rusak J.A., Salmaso N., Samal N.R., Schindler D.E., Schladow S.G., Schmid M., Schmidt S.R., Silow E., Soylu M.E., Teubner K., Verburg P., Voutilainen A., Watkinson A., Williamson C.E. & Zhang G. 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophysical Research Letters 42, 10773–10781, doi: 10.1002/2015gl066235.


Palmer M.E., Yan N.D. & Somers K.M. 2014. Climate change drives coherent trends in physics and oxygen content in North American lakes. Climatic Change 124, 285–299, doi: 10.1007/s10584-014-1085-4.


Piccolroaz S., Toffolon M. & Majone B. 2015. The role of stratification on lakes’ thermal response: the case of Lake Superior. Water Resources Research 51, 7878–7894, doi: 10.1002/2014wr016555.


Pilla R.M., Williamson C.E., Zhang J., Smyth R.L., Lenters J.D., Brentrup J.A., Knoll L.B. & Fisher T.J. 2018. Browning-related decreases in water transparency lead to long-term increases in surface water temperature and thermal stratification in two small lakes. Journal of Geophysical Research—Biogeosciences 123, 1651–1665, doi: 10.1029/2017jg004321.


Previdi M., Smith K.L. & Polvani L.M. 2021. Arctic amplification of climate change: a review of underlying mechanisms. Environmental Research Letters 16, article no. 093003, doi: 10.1088/1748-9326/ac1c29.


Prowse T. D., Bring A., Carmack E.C., Holland M.M., Instanes A., Mård J., Vihma T. & Wrona F.J. 2017. Freshwater. In: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017. Pp. 169–202. Oslo: Arctic Monitoring and Assessment Programme.


Ptak M., Sojka M., Choiński A. & Nowak B. 2018. Effect of environmental conditions and morphometric parameters on surface water temperature in Polish lakes. Water 10, article no. 580, doi: 10.3390/w10050580.


Puts I.C., Ask J., Deininger A., Jonsson A., Karlsson J. & Bergstrom A.K. 2023. Browning affects pelagic productivity in northern lakes by surface water warming and carbon fertilization. Global Change Biology 29, 375–390, doi: 10.1111/gcb.16469.


Rantanen M., Karpechko A.Y., Lipponen A., Nordling K., Hyvärinen O., Ruosteenoja K., Vihma T. & Laaksonen A. 2022. The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment 3, article no. 168, doi: 10.1038/s43247-022-00498-3.


Read J.S. & Rose K.C. 2013. Physical responses of small temperate lakes to variation in dissolved organic carbon concentrations. Limnology and Oceanography 58, 921–931, doi: 10.4319/lo.2013.58.3.0921.


Schmid M., Hunziker S. & Wüest A. 2014. Lake surface temperatures in a changing climate: a global sensitivity analysis. Climatic Change 124, 301–315, doi: 10.1007/s10584-014-1087-2.


Schmid M. & Köster O. 2016. Excess warming of a Central European lake driven by solar brightening. Water Resources Research 52, 8103–8116, doi: 10.1002/2016wr018651.


Serreze M.C., Barrett A.P., Stroeve J.C., Kindig D.N. & Holland M.M. 2009. The emergence of surface-based Arctic amplification. The Cryosphere 3, 11–19, doi: 10.5194/tc-3-11-2009.


Sharma S., Blagrave K., Magnuson J.J., O’Reilly C.M., Oliver S., Batt R.D., Magee M.R., Straile D., Weyhenmeyer G.A., Winslow L. & Woolway R.I. 2019. Widespread loss of lake ice around the Northern Hemisphere in a warming world. Nature Climate Change 9, 227–231, doi: 10.1038/s41558-018-0393-5.


Shock C.C. & Pratt K. 2003. Phosphorus effects on surface water quality and phosphorus TMDL development. In: Proceedings of the Western Nutrient Management Conference. 6–7 March 2003. Salt Lake City, UT. Pp. 211–220. Brookings, SD: Potash & Phosphate Institute.


Tanentzap A.J., Kielstra B.W., Wilkinson G.M., Berggren M., Craig N., del Giorgio P.A., Grey J., Gunn J.M., Jones S.E., Karlsson J., Solomon C.T. & Pace M.L. 2017. Terrestrial support of lake food webs: synthesis reveals controls over cross-ecosystem resource use. Science Advances 3, article no. e1601765, doi: 10.1126/sciadv.1601765.


Van Cleave K., Lenters J.D., Wang J. & Verhamme E.M. 2014. A regime shift in Lake Superior ice cover, evaporation, and water temperature following the warm El Niño winter of 1997–1998. Limnology and Oceanography 59, 1889–1898, doi: 10.4319/lo.2014.59.6.1889.


Vazquez-Ramirez J. & Venn S.E. 2021. Seeds and seedlings in a changing world: a systematic review and meta-analysis from high altitude and high latitude ecosystems. Plants (Basel) 10, article no. 768, doi: 10.3390/plants10040768.


Weckström J. & Korhola A. 2001. Patterns in the distribution, composition and diversity of diatom assemblages in relation to ecoclimatic factors in Arctic Lapland. Journal of Biogeography 28, 31–45, doi: 10.1046/j.1365-2699.2001.00537.x.


Woolway R.I. & Merchant C.J. 2018. Intralake heterogeneity of thermal responses to climate change: a study of large Northern Hemisphere lakes. Journal of Geophysical Research—Atmospheres 123, 3087–3098, doi: 10.1002/2017jd027661.


Yvon-Durocher G., Caffrey J.M., Cescatti A., Dossena M., del Giorgio P., Gasol J.M., Montoya J.M., Pumpanen J., Staehr P.A., Trimmer M., Woodward G. & Allen A.P. 2012. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476, doi: 10.1038/nature11205.


Zhong Y., Notaro M., Vavrus S.J. & Foster M.J. 2016. Recent accelerated warming of the Laurentian Great Lakes: physical drivers. Limnology and Oceanography 61, 1762–1786, doi: 10.1002/lno.10331.


Zuur A., Ieno E.N., Walker N., Saveliev A.A. & Smith G.M. 2009. Mixed effects models and extensions in ecology with R. New York, NY: Springer.
Published
2024-08-08
How to Cite
Zhang M., Leppäranta M., Korhola A., Kirchner N., Granebeck A., Schenk F., Weckström K., Heikkilä M., & Weckström J. (2024). Drivers of spatio-temporal variations in summer surface water temperatures of Arctic Fennoscandian lakes (2000–21). Polar Research, 43. https://doi.org/10.33265/polar.v43.9580
Section
Research Articles