Influence of seasonal sea-ice loss on Arctic precipitation δ18O: a GCM-based analysis of monthly data

  • Wenxuan Song State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
  • Zhongfang Liu State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
  • Haimao Lan State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
  • Xiaohe Huan State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
Keywords: Precipitation isotope, Arctic warming, sea ice, local evaporation, hydrological cycle, palaeotemperature reconstruction

Abstract

Rapid Arctic warming and sea-ice loss have intensified the Arctic hydrological cycle, increasing local evaporation and precipitation. Stable water isotopes as environmental tracers can provide useful insights into the Arctic hydrological cycle. However, the paucity of isotopic observations in the Arctic has limited our understanding of the hydrological changes. Here, we use an isotope-enabled atmospheric general circulation model (IsoGSM) combined with the Global Network of Isotopes in Precipitation (GNIP) observations to investigate the relationship between sea-ice changes and Arctic precipitation δ18O (δ18Op) to reveal the relative influence of local air temperature and evaporation on Arctic summer and winter δ18Op. We find that the Arctic δ18Op is negatively correlated with sea-ice concentration but positively with air temperature. Sea-ice loss leads to enriched Arctic δ18Op through enhanced local evaporation and warming, but the relative importance of these processes varies between seasons. During summer, both local evaporation and warming contribute equally to δ18Op changes. In contrast, winter δ18O is predominantly driven by air temperature. This work improves our understanding of how Arctic precipitation isotopes respond to sea-ice changes and has implications for the Arctic hydrological cycle and palaeotemperature reconstructions.

Downloads

Download data is not yet available.

References


Adler R.F., Huffman G.J., Chang A., Ferraro R., Xie P.P., Janowiak J., Rudolf B., Schneider U., Curtis S., Bolvin D., Gruber A., Susskind J., Arkin P. & Nelkin E. 2003. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). Journal of Hydrometeorology 4, 1147–1167, doi: 10.1175/1525-7541.


Allan R.P., Barlow M., Byrne M.P., Cherchi A., Douville H., Fowler H.J., Gan T.Y., Pendergrass A.G., Rosenfeld D., Swann A.L., Wilcox L.J. & Zolina O. 2020. Advances in understanding large-scale responses of the water cycle to climate change. Annals of the New York Academy of Sciences 1472, 49–75, doi: 10.1111/nyas.14337.


Bailey H., Hubbard A., Klein E.S., Mustonen K.R., Akers P.D., Marttila H. & Welker J.M. 2021. Arctic sea-ice loss fuels extreme European snowfall. Nature Geoscience 14, 283–288, doi: 10.1038/s41561-021-00719-y.


Bintanja R. & Andry O. 2017. Towards a rain-dominated Arctic. Nature Climate Change 7, 263–267, doi: 10.1038/nclimate3240.


Bintanja R. & Selten F.M. 2014. Future increases in Arctic precipitation linked to local evaporation and sea-ice retreat. Nature 509, 479–482, doi: 10.1038/nature13259.


Blunden J. & Arndt D.S. 2012. State of the climate in 2011. Bulletin of the American Meteorological Society 93, S1–S264, doi: 10.1175/2012BAMSStateoftheClimate.1.


Boisvert L.N., Webster M.A., Petty A.A., Markus T., Bromwich D.H. & Cullather R.I. 2018. Intercomparison of precipitation estimates over the Arctic Ocean and its peripheral seas from reanalyses. Journal of Climate 31, 8441–8462, doi: 10.1175/JCLI-D-18-0125.1.


Bonne J.L., Masson-Delmotte V., Cattani O., Delmotte M., Risi C., Sodemann H. & Steen-Larsen H.C. 2014. The isotopic composition of water vapour and precipitation in Ivittuut, southern Greenland. Atmospheric Chemistry and Physics 14, 4419–4439, doi: 10.5194/acp-14-4419-2014.


Bowen G.J. 2008. Spatial analysis of the intra-annual variation of precipitation isotope ratios and its climatological corollaries. Journal of Geophysical Research—Atmospheres 113, article no. D05113, doi: 10.1029/2007JD009295.


Bowen G.J., Cai Z., Fiorella R.P. & Putman A.L. 2019. Isotopes in the water cycle: regional-to global-scale patterns and applications. Annual Review of Earth and Planetary Sciences 47, 453–479, doi: 10.1146/annurev-earth-053018-060220.


Cluett A., Thomas E., Evans S. & Keys P. 2021. Seasonal variations in moisture origin explain spatial contrast in precipitation isotope seasonality on coastal western Greenland. Journal of Geophysical Research—Atmospheres 126, e2020JD033543, doi: 10.1029/2020JD033543.


Cohen J., Screen J.A., Furtado J.C., Barlow M., Whittleston D., Coumou D., Francis J., Dethloff K., Entekhabi D., Overland J. & Jones J. 2014. Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience 7, 627–637, doi: 10.1038/ngeo2234.


Dai A., Luo D., Song M. & Liu J. 2019. Arctic amplification is caused by sea-ice loss under increasing CO2. Nature Communications 10, article no. 121, doi: 10.1038/s41467-018-07954-9.


Dansgaard W. 1964. Stable isotopes in precipitation. Tellus 16, 436–468, doi: 10.3402/tellusa.v16i4.8993.


Draxler R.R. & Hess G. 1998. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion, and deposition. Australian Meteorological Magazine 47, 295–308.


Faber A.K., Møllesøe Vinther B., Sjolte J. & Anker Pedersen R. 2017. How does sea ice influence δ18O of Arctic precipitation? Atmospheric Chemistry and Physics 17, 5865–5876, doi: 10.5194/acp-17-5865-2017.


Ford V.L. & Frauenfeld O.W. 2022. Arctic precipitation recycling and hydrologic budget changes in response to sea ice loss. Global and Planetary Change 209, article no. 103752, doi: 10.1016/j.gloplacha.2022.103752.


Fröhlich K., Gibson J.J. & Aggarwal P.K. 2002. Deuterium excess in precipitation and its climatological significance. IAEA-CN-80/104. In: Proceedings. Study of environmental change using isotope techniques. C & S Papers Series 13/P. Pp. 54–66. Vienna: International Atomic Energy Agency.


Galewsky J., Steen-Larsen H.C., Field R.D., Worden J., Risi C. & Schneider M. 2016. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle. Reviews of Geophysics 54, 809–865, doi: 10.1002/2015rg000512.


Gat J.R., Bowser C.J. & Kendall C. 1994. The contribution of evaporation from the Great Lakes to the continental atmosphere: estimate based on stable isotope data. Geophysical Research Letters 21, 557–560, doi: 10.1029/94GL00069.


Graversen R.G., Mauritsen T., Tjernström M., Källén E. & Svensson G. 2008. Vertical structure of recent Arctic warming. Nature 451, 53–56, doi: 10.1038/nature06502.


Hendricks M., DePaolo D. & Cohen R. 2000. Space and time variation of δ18O and δD in precipitation: can paleotemperature be estimated from ice cores? Global Biogeochemical Cycles 14, 851–861, doi: 10.1029/1999GB001198.


Holland M.M., Serreze M.C. & Stroeve J. 2010. The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. Climate Dynamics 34, 185–200, doi: 10.1007/s00382-008-0493-4.


Holme C., Gkinis V., Lanzky M., Morris V., Olesen M., Thayer A., Vaughn B.H. & Vinther B.M. 2019. Varying regional δ18O-temperature relationship in high-resolution stable water isotopes from east Greenland, Climate of the Past 15, 893–912, doi: 10.5194/cp-15-893-2019.


Huang Y., Dong X., Bailey D.A., Holland M.M., Xi B., DuVivier A.K., Kay J.E., Landrum L.L. & Deng Y. 2019. Thicker clouds and accelerated Arctic sea ice decline: the atmosphere–sea ice interactions in spring. Geophysical Research Letters 46, 6980–6989, doi: 10.1029/2019GL082791.


IAEA/WMO [International Atomic Energy Agency/World Meterological Organization] 2019. Global Network of Isotopes in Precipitation. Database accessed on the internet at https://www.iaea.org/services/networks/gnip on 20 May 2022.


Johnsen S.J., Dansgaard W. & White J.W.C. 1989. The origin of Arctic precipitation under present and glacial conditions. Tellus B 41, 452–468, doi: 10.3402/tellusb.v41i4.15100.


Jouzel J., Alley R.B., Cuffey K.M., Dansgaard W., Grootes P., Hoffmann G., Johnsen S.J., Koster R.D., Peel D., Shuman S.A., Stievenard M., Stuiver M. & White J. 1997. Validity of the temperature reconstruction from water isotopes in ice cores. Journal of Geophysical Research—Oceans 102, 26471–26487, doi: 10.1029/97JC01283.


Kanamitsu M., Ebisuzaki W., Woollen J., Yang S.K., Hnilo J.J., Fiorino M. & Potter G.L. 2002. NCEP–DOE AMIP-II Reanalysis (R-2). Bulletin of the American Meteorological Society 83, 1631–1644, doi: 10.1175/bams-83-11-1631.


Klein E.S., Cherry J., Young J., Noone D., Leffler A. & Welker J.J.S. 2015. Arctic cyclone water vapor isotopes support past sea ice retreat recorded in Greenland ice. Scientific Report 5, article no. 10295, doi: 10.1038/srep10295.


Klein E.S. & Welker J.M. 2016. Influence of sea ice on ocean water vapor isotopes and Greenland ice core records. Geophysical Research Letters 43, 12475–12483, doi: 10.1002/2016gl071748.


Kohn M.J. & Welker J.M. 2005. On the temperature correlation of δ18O in modern precipitation. Earth and Planetary Science Letters 231, 87–96, doi: 10.1016/j.epsl.2004.12.004.


Kopec B.G., Feng X., Michel F.A. & Posmentier E.S. 2016. Influence of sea ice on Arctic precipitation. Proceedings of the National Academy Sciences of the United States of America 113, 46–51, doi: 10.1073/pnas.1504633113.


Kurita N. 2011. Origin of Arctic water vapor during the ice-growth season. Geophysical Research Letters 38, 35–43, doi: 10.1029/2010gl046064.


Leroy-dos Santos C., Masson-Delmotte V., Casado M., Fourré E., Steen-Larsen H., Maturilli M., Orsi A., Berchet A., Cattani O., Minster B., Gherardi J. & Landais A. 2020. A 4.5 year-long record of Svalbard water vapor isotopic composition documents winter air mass origin. Journal of Geophysical Research—Atmosphere 125, article no. 32681, doi: 10.1029/2020JD032681.


Liu Z., Risi C., Codron F., He X., Poulsen C.J., Wei Z., Chen D., Li S. & Bowen G.J. 2021. Acceleration of western Arctic sea ice loss linked to the Pacific North American pattern. Nature Communication 12, article no. 1519, doi: 10.1038/s41467-021-21830-z.


Liu Z., Risi C., Codron F., Jian Z., Wei Z., He X., Poulsen C.J., Wang Y., Chen D., Ma W., Cheng Y. & Bowen G.J. 2022. Atmospheric forcing dominates winter Barents–Kara sea ice variability on interannual to decadal time scales. Procceedings of the National Academy Sciences of the United States of America 119, e2120770119, doi: 10.1073/pnas.2120770119.


Liu Z., Yoshimura K., Bowen G.J. & Welker J.M. 2014. Pacific–North American teleconnection controls on precipitation isotopes (δ18O) across the contiguous United States and adjacent regions: a GCM-based analysis. Journal of Climate 27, 1046–1061, doi: 10.1175/JCLI-D-13-00334.1.


Meier W.N., Fetterer F.A., Windnagel K. & Stewart J.S. 2021. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, version 4. Data set id G02202, doi: 10.7265/efmz-2t65. Boulder, CO: National Snow and Ice Data Center. Accessed on the internet at https://nsidc.org/data/g02202/versions/4 on 16 May 2023.


Mellat M., Bailey H., Mustonen K.R., Marttila H., Klein E.S., Gribanov K., Bret-Harte M.S., Chupakov A.V., Divine D.V., Else B., Filippov L., Hyöky V., Jones S., Kirpotin S.N., Kroon A., Markussen H.T., Nielsen M., Olsen M., Paavola R., Pokrovsky O.S., Prokushkin A., Rasch M., Raundrup K., Suominen O., Syvänperä L., Vignisson S.R., Zarov E. & Welker J.M. 2021. Hydroclimatic controls on the isotopic (δ18O, δ2H, d-excess) traits of pan-Arctic summer rainfall events. Frontiers in Earth Science 367, 45–60, doi: 10.3389/feart.2021.651731.


Merlivat L. & Jouzel J. 1979. Global climatic interpretation of the deuterium-oxygen 18 relationship for precipitation. Journal of Geophysical Research—Oceans 84, 5029–5033, doi: 10.1029/JC084iC08p05029.


Nan Y., He Z., Tian F., Wei Z. & Tian L. 2021. Can we use precipitation isotope outputs of isotopic general circulation models to improve hydrological modeling in large mountainous catchments on the Tibetan Plateau? Hydrology and Earth System Sciences 25, 6151–6172, doi: 10.5194/hess-25-6151-2021.


Overland J.E. & Wang M. 2013. When will the summer Arctic be nearly sea ice free? Geophysical Research Letters 40, 2097–2101, doi: 10.1002/grl.50316.


Overland J.E., Wood K.R. & Wang M. 2011. Warm Arctic-cold continents: climate impacts of the newly open Arctic Sea. Polar Research 30, 567–570, doi: 10.3402/polar.v30i0.15787.


Puntsag T., Mitchell M.J., Campbell J.L., Klein E.S., Likens G.E. & Welker J.M. 2016. Arctic Vortex changes alter the sources and isotopic values of precipitation in northeastern US. Scientific Reports 6, article no. 22647, doi: 10.1038/srep22647.


Putman A.L., Feng X., Sonder L.J. & Posmentier E.S. 2017. Annual variation in event-scale precipitation δ2H at Barrow, AK, reflects vapor source region. Atmospheric Chemistry and Physics 17, 4627–4639, doi: 10.5194/acp-17-4627-2017.


Reynolds R.W., Smith T.M., Liu C., Chelton D.B., Casey K.S. & Schlax M.G. 2007. Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate 20, 5473–5496, doi: 10.1175/2007JCLI1824.1.


Rozanski K., Araguás-Araguás L. & Gonfiantini R. 1993. Isotopic patterns in modern global precipitation. In P.K. Swart et al. (eds.): Climate change in continental isotopic records. Geophysical Monograph Series 78. Pp. 1–36. Washington, DC: American Geophysical Union.


Screen J.A. & Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337, doi: 10.1038/nature09051.


Screen J.A. & Simmonds I. 2012. Declining summer snowfall in the Arctic: causes, impacts and feedbacks. Climate Dynamics 38, 2243–2256, doi: 10.1007/s00382-011-1105-2.


Sime L.C., Hopcroft P.O. & Rhodes R.H. 2019. Impact of abrupt sea ice loss on Greenland water isotopes during the last glacial period. Proceedings of the National Academy of Sciences of the United States of America 116, 4099–4104, doi: 10.1073/pnas.1807261116.


Sime L.C., Risi C., Tindall J.C., Sjolte J., Wolff E.W., Masson-Delmotte V. & Capron E. 2013. Warm climate isotopic simulations: what do we learn about interglacial signals in Greenland ice cores? Quaternary Science Reviews 67, 59–80, doi: 10.1016/j.quascirev.2013.01.009.


Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D. & Ngan F. 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96, 2059–2077, doi: 10.1175/bams-d-14-00110.1.


Stroeve J.C., Kattsov V., Barrett A., Serreze M., Pavlova T., Holland M. & Meier W.N. 2012. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters 39, L16502, doi: 10.1029/2012gl052676.


Stuecker M.F., Bitz C.M., Armour K.C., Proistosescu C., Kang S.M., Xie S.P., Kim D., McGregor S., Zhang W., Zhao S., Cai W., Dong Y. & Jin F.-F. 2018. Polar amplification dominated by local forcing and feedbacks. Nature Climate Change 8, 1076–1081, doi: 10.1038/s41558-018-0339-y.


van der Ent R.J. & Tuinenburg O.A. 2017. The residence time of water in the atmosphere revisited. Hydrology and Earth System Sciences 21, 779–790, doi: 10.5194/hess-21-779-2017.


Vihma T., Pirazzini R., Fer I., Renfrew I.A., Sedlar J., Tjernström M., Lüpkes C., Nygård T., Notz D., Weiss J., Marsan D., Cheng B., Birnbaum G., Gerland S., Chechin D. & Gascard J.C. 2014. Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review. Atmospheric Chemistry and Physics 14, 9403–9450, doi: 10.5194/acp-14-9403-2014.


Vihma T., Screen J., Tjernström M., Newton B., Zhang X., Popova V., Deser C., Holland M. & Prowse T. 2016. The atmospheric role in the Arctic water cycle: a review on processes, past and future changes, and their impacts. Journal of Geophysical Research—Biogeosciences 121, 586–620, doi: 10.1002/2015JG003132.


Voosen P. 2020. New feedbacks speed up the demise of Arctic sea ice. Science 369, 1043–1044, doi: 10.1126/science.369.6507.1043.


Wei Z., Yoshimura K., Okazaki A., Ono K., Kim W., Yokoi M. & Lai C.T. 2016. Understanding the variability of water isotopologues in near-surface atmospheric moisture over a humid subtropical rice paddy in Tsukuba, Japan. Journal of Hydrology 533, 91–102, doi: 10.1016/j.jhydrol.2015.11.044.


Xia W., Xie H. & Ke C. 2014. Assessing trend and variation of Arctic sea-ice extent during 1979–2012 from a latitude perspective of ice edge. Polar Research 33, 47–53, doi: 10.3402/polar.v33.21249.


Yoshimura K. & Kanamitsu M. 2008. Dynamical global downscaling of global reanalysis. Monthly Weather Review 136, 2983–2998, doi: 10.1175/2008mwr2281.1.


Yoshimura K., Kanamitsu M., Noone D. & Oki T. 2008. Historical isotope simulation using reanalysis atmospheric data. Journal of Geophysical Research—Atmospheres 113, D19108, doi: 10.1029/2008jd010074.
Published
2023-12-08
How to Cite
Song W., Liu Z., Lan H., & Huan X. (2023). Influence of seasonal sea-ice loss on Arctic precipitation δ18O: a GCM-based analysis of monthly data. Polar Research, 42. https://doi.org/10.33265/polar.v42.9751
Section
Research Articles