Smoking guns and volcanic ash: the importance of sparse tephras in Greenland ice cores

  • Gill Plunkett Archaeology and Palaeoecology, School of Natural and Built Environment, Queen’s University Belfast, Northern Ireland, UK
  • Michael Sigl Climate and Environmental Physics, Physics Institute & Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
  • Jonathan R. Pilcher Archaeology and Palaeoecology, School of Natural and Built Environment, Queen’s University Belfast, Northern Ireland, UK
  • Joseph R. McConnell Division of Hydrological Sciences, Desert Research Institute, Reno, NV, USA
  • Nathan Chellman Division of Hydrological Sciences, Desert Research Institute, Reno, NV, USA
  • J.P. Steffensen Centre for Ice and Climate, University of Copenhagen, Copenhagen, Denmark
  • Ulf Büntgen Department of Geography, University of Cambridge, Cambridge, UK; Swiss Federal Research Institute WSL, Birmensdorf, Switzerland; Global Change Research Centre (CzechGlobe), Brno, Czech Republic; Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic
Keywords: Primary ashfall, resuspended volcanic ash, volcanic eruptions, Katla, dust storms, tephrochronology

Abstract

Volcanic ash (fine-grained tephra) within Greenland ice cores can complement the understanding of past volcanism and its environmental and societal impacts. The presence of ash in sparse concentrations in the ice raises questions about whether such material represents primary ashfall in Greenland or resuspended (remobilized) material from continental areas. In this article, we investigate this issue by examining tephra content in quasi-annual samples from two Greenland ice cores during a period of ca. 20 years and considering their relationships with sulphur and particulate data from the same cores. We focus on the interval 815–835 CE as it encompasses a phase (818–822 CE) of heightened volcanogenic sulphur previously ascribed to an eruption of Katla, Iceland. We find that tephra is a frequent but not continuous feature within the ice, unlike similarly sized particulate matter. A solitary ash shard whose major element geochemistry is consistent with Katla corroborates the attribution of the 822±1 CE sulphur peak to this source, clearly showing that a single shard can signify primary ashfall. Other tephras are present in similarly low abundances, but their geochemistries are less certainly attributable to specific sources. Although these tephra shards tend to coincide with elevated sulphur and fine (<10 µm) particulates, they are not associated with increased coarse (>10 µm) particle concentrations that might be expected if the shards had been transported by dust storms. We conclude that the sparse shards derive from primary ashfall, and we argue that low tephra concentrations should not be dismissed as insignificant.

Downloads

Download data is not yet available.

References


Abbott P.M. & Davies S.M. 2012. Volcanism and the Greenland ice-cores: the tephra record. Earth-Science Reviews 115, 173–191, doi: 10.1016/j.earscirev.2012.09.001.


Barbante C., Kehrwald N.M., Marianelli P., Vinther B.M., Steffensen J.P., Cozzi G., Hammer C.U., Clausen H.B. & Siggaard-Andersen M.L. 2013. Greenland ice core evidence of the 79 AD Vesuvius eruption. Climate of the Past 9, 1221–1232, doi: 10.5194/cp-9-1221-2013.


Bory A.M., Biscaye P.E., Piotrowski A.M. & Steffensen J.P. 2003. Regional variability of ice core dust composition and provenance in Greenland. Geochemistry, Geophysics, Geosystems 4, article no. 1107, doi: 10.1029/2003GC000627.


Bory A.M., Biscaye P.E., Svensson A. & Grousset F.E. 2002. Seasonal variability in the origin of recent atmospheric mineral dust at NorthGRIP, Greenland. Earth and Planetary Science Letters 196, 123–134, doi: 10.1016/S0012-821X(01)00609-4.


Bourne A.J., Abbott P.M., Albert P.G., Cook E., Pearce N.J., Ponomareva V., Svensson A. & Davies S.M. 2016. Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes. Scientific Reports 6, article no. 29837, doi: 10.1038/srep29837.


Büntgen U., Eggertsson Ó., Wacker L., Sigl M., Ljungqvist F.C., Di Cosmo N., Plunkett G., Krusic P.J., Newfield T.P., Esper J., Lane C., Reinig F. & Oppenheimer C. 2017. Multi-proxy dating of Iceland’s major pre-settlement Katla eruption to 822–823 CE. Geology 45, 783–786, doi: 10.1130/G39269.1.


Büntgen U., Myglan V.S., Charpentier Ljungqvist F., McCormick M., Di Cosmo N., Sigl M., Jungclaus J., Wagner S., Krusic P.J., Esper J., Kaplan J.O., de Vaan M.A.C., Luterbacher J., Wacker L., Tegel W. & Kirdyanov A.V. 2016. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience 9, 231–236, doi: 10.1038/ngeo2652.


Bursik M., Sieh K. & Meltzner A. 2014. Deposits of the most recent eruption in the Southern Mono Craters, California: description, interpretation and implications for regional marker tephras. Journal of Volcanology and Geothermal Research 275, 114–131, doi: 10.1016/j.jvolgeores.2014.02.015.


Cao L.Q., Arculus R.J. & McKelvey B.C. 1995. Geochemistry and petrology of volcanic ashes recovered from Sites 881 through 884: a temporal record of Kamchatka and Kurile volcanism. Proceedings of the Ocean Drilling Program, Scientific Results 145, 345–381.


Coulter S.E., Pilcher J.R., Plunkett G., Baillie M.G.L., Hall V.A., Steffensen J.P., Vinther B.M., Clausen H.B. & Johnsen S.J. 2012. Holocene tephras highlight complexity of volcanic signals in Greenland ice cores. Journal of Geophysical Research—Atmospheres 117, D21303, doi: 10.1029/2012JD017698.


Dunbar N.W., Iverson N.A., Van Eaton A.R., Sigl M., Alloway B.V., Kurbatov A.V., Mastin L.G., McConnell J.R. & Wilson C.J.N. 2017. New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica. Scientific Reports 7, article no. 12238, doi: 10.1038/s41598-017-11758-0.


Esper J., Schneider L., Krusic P.J., Luterbacher J., Büntgen U., Timonen M., Sirocko F. & Zorita E. 2013. European summer temperature response to annually dated volcanic eruptions over the past nine centuries. Bulletin of Volcanology 75, article no. 736, doi: 10.1007/s00445-013-0736-z.


Flanner M.G., Gardner A.S., Eckhardt S., Stohl A. & Perket J. 2014. Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions. Journal of Geophysical Research—Atmospheres 119, 9481–9491, doi: 10.1002/2014JD021977.


Froggatt P.C. 1992. Standardization of the chemical analysis of tephra deposits. Report of the ICCT working group. Quaternary International 13, 93–96, doi: 10.1016/1040-6182(92)90014-S.


Hadley D., Hufford G.L. & Simpson J.J. 2004. Resuspension of relic volcanic ash and dust from Katmai: still an aviation hazard. Weather and Forecasting 19, 829–840, doi: 10.1175/1520-0434(2004)019<0829:RORVAA>2.0.CO;2.


Hammer C.U., Clausen H.B. & Dansgaard W. 1980. Greenland ice sheet evidence of post-glacial volcanism and its climatic impact. Nature 288, 230–235, doi: 10.1038/288230a0.


Hayward C. 2012. High spatial resolution electron probe microanalysis of tephras and melt inclusions without beam-induced chemical modification. The Holocene 22, 119–125, doi: 10.1177/0959683611409777.


Hildreth W. & Fierstein J. 2012. The Novarupta-Katmai eruption of 1912—largest eruption of the twentieth century: centennial perspectives. Professional Paper 1791. Reston, VA: US Geological Survey.


Hunt J.B. & Hill P.G. 1993. Tephra geochemistry: a discussion of some persistent analytical problems. The Holocene 3, 271–278, doi: 10.1177/095968369300300310.


Iverson N.A., Kalteyer D., Dunbar N.W., Kurbatov A. & Yates M. 2017. Advancements and best practices for analysis and correlation of tephra and cryptotephra in ice. Quaternary Geochronology 40, 45–55, doi: 10.1016/j.quageo.2016.09.008.


Jensen B.J.L., Pyne-O’Donnell S., Plunkett G., Froese D.G., Hughes P.D.M., Sigl M., McConnell J.R., Amesbury M.J., Blackwell P.G., van den Bogaard C., Buck C.E., Charman D.J., Clague J.J., Hall V.A., Koch J., Mackay H., Mallon G., McColl L. & Pilcher J.R. 2014. Transatlantic distribution of the Alaskan White River Ash. Geology 42, 875–878, doi: 10.1130/G35945.1.


Loveluck C.P., McCormick M., Spaulding N.E., Clifford H., Handley M.J., Hartman L., Hoffmann H., Korotkikh E.V., Kurbatov A.V., More A.F. & Sneed S.B. 2018. Alpine ice-core evidence for the transformation of the European monetary system, AD 640–670. Antiquity 92, 1571–1585, doi: 10.15184/aqy.2018.110.


Lowe D.J. 2011. Tephrochronology and its application: a review. Quaternary Geochronology 6, 107–153, doi: 10.1016/j.quageo.2010.08.003.


Lucchi F., Tranne C.A., De Astis G., Keller J., Losito R. & Morche W. 2008. Stratigraphy and significance of brown tuffs on the Aeolian Islands (southern Italy). Journal of Volcanology and Geothermal Research 177, 49–70, doi: 10.1016/j.jvolgeores.2007.11.006.


Lupker M., Aciego S.M., Bourdon B., Schwander J. & Stocke, T.F. 2010. Isotopic tracing (Sr, Nd, U and Hf) of continental and marine aerosols in an 18th century section of the Dye-3 ice core (Greenland). Earth and Planetary Science Letters 295, 277–286, doi: 10.1016/j.epsl.2010.04.010.


Maselli O.J., Chellman N.J., Grieman M., Layman L., McConnell J.R., Pasteris D., Rhodes R.H., Saltzman E. & Sigl M. 2017. Sea ice and pollution-modulated changes in Greenland ice core methanesulfonate and bromine. Climate of the Past 13, 39–59, doi: 10.5194/cp-13-39-2017.


McConnell J.R., Burke A., Dunbar N.W., Kohler P., Thomas J.L., Arienzo M.M., Chellman N.J., Maselli O.J., Sigl M., Adkins J.F., Baggenstos D., Burkhart J.F., Brook E.J., Buizert C., Cole-Dai J., Fudge T.J., Knorr G., Graf H.F., Grieman M.M., Iverson N., McGwire K.C., Mulvaney R., Paris G., Rhodes R.H., Saltzman E.S., Severinghaus J.P., Steffensen J.P., Taylor K.C. & Winckler G. 2017. Synchronous volcanic eruptions and abrupt climate change similar to 17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences of the United States of America 114, 10035–10040, doi: 10.1073/pnas.1705595114.


Miyake F., Nagaya K., Masuda K. & Nakamura T. 2012. A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486, 240–242, doi: 10.1038/nature11123.


Nooren C.A.M., Hoek W.Z., Tebbens L.A. & Martín Del Pozzo A.L. 2009. Tephrochronological evidence for the late Holocene eruption history of El Chichón Volcano, Mexico. Geofísica Internacional 48, 97–112.


Nooren K., Hoek W.Z., Van Der Plicht H., Sigl M., van Bergen M.J., Galop D., Torrescano-Valle N., Islebe G., Huizinga A., Winkels T. & Middelkoop H. 2017. Explosive eruption of El Chichón volcano (Mexico) disrupted 6th century Maya civilization and contributed to global cooling. Geology 45, 175–178, doi: 10.1130/G38739.1.


Palais J.M., Germani M.S. & Zielinski G.A. 1992. Inter‐hemispheric transport of volcanic ash from a 1259 AD volcanic eruption to the Greenland and Antarctic ice sheets. Geophysical Research Letters 19, 801–804, doi: 10.1029/92GL00240.


Plunkett G. & Pilcher J.R. 2018. Defining the potential sources region of volcanic ash in northwest Europe during the Mid- to Late Holocene. Earth-Science Reviews 179, 20–37, doi: 10.1016/j.earscirev.2018.02.006.


Ponomareva V., Portnyagin M., Pendea I.F., Zelenin E., Bourgeois J., Pinegina T. & Kozhurin A. 2017. A full Holocene tephrochronology for the Kamchatsky Peninsula region: applications from Kamchatka to North America. Quaternary Science Reviews 168, 101–122, doi: 10.1016/j.quascirev.2017.04.031.


Ponomareva V., Portnyagin M., Pevzner M., Blaauw M., Kyle P. & Derkachev A. 2015. Tephra from andesitic Shiveluch volcano, Kamchatka, NW Pacific: chronology of explosive eruptions and geochemical fingerprinting of volcanic glass. International Journal of Earth Sciences 104, 1459–1482, doi: 10.1007/s00531-015-1156-4.


Post J. 2016. Reconstructing the eruption history of El Chichón volcano from river terraces (Chiapas, Mexico). Master’s thesis, Dept. of Earth Science, University of Utrecht.


Prospero J.M., Bullard J.E. & Hodgkins R. 2012. High-latitude dust over the North Atlantic: inputs from Icelandic proglacial dust storms. Science 335, 1078–1082, doi: 10.1126/science.1217447.


Robock A. 2000. Volcanic eruptions and climate. Reviews of Geophysics 38, 191–219, doi: 10.1029/1998RG000054.


Ruth U., Wagenbach D., Steffensen J.P. & Bigler M. 2003. Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. Journal of Geophysical Research—Atmospheres 108, article no. 4098, doi: 10.1029/2002JD002376.


Siebert L., Simkin T. & Kimberly P. 2011. Volcanoes of the world. 3rd edn. Berkeley: University of California Press.


Sigl M., McConnell J.R., Layman L., Maselli O., McGwire K., Pasteris D., Dahl‐Jensen D., Steffensen J.P., Vinther B., Edwards R. & Mulvaney R. 2013. A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. Journal of Geophysical Research—Atmospheres 118, 1151–1169, doi: 10.1038/nature14565.


Sigl M., Winstrup M., McConnell J.R., Welten K.C., Plunkett G., Ludlow F., Büntgen U., Caffee M., Chellman N., Dahl-Jensen D., Fischer H., Kipfstuhl S., Kostick C., Maselli O.J., Mekhaldi F., Mulvaney R., Muscheler R., Pasteris D.R., Pilcher J.R., Salzer M., Schüpbach S., Steffensen J.P., Vinther B.M. & Woodruff T.E. 2015. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549, doi: 10.1038/nature14565.


Steen‐Larsen H.C., Masson‐Delmotte V., Sjolte J., Johnsen S.J., Vinther B.M., Bréon F.M., Clausen H.B., Dahl‐Jensen D., Falourd S., Fettweis X. & Gallée H. 2011. Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. Journal of Geophysical Research—Atmospheres 116, D6, doi: 10.1029/2010JD014311.


Stoffel M., Khodri M., Corona C., Guillet S., Poulain V., Bekki S., Guiot J., Luckman B.H., Oppenheimer C., Lebas N. & Beniston M. 2015. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nature Geoscience 8, 784–788, doi: 10.1038/ngeo2526.


Sun C.Q., Plunkett G., Liu J.Q., Zhao H.L., Sigl M., McConnell J.R., Pilcher J.R., Vinther B., Steffensen J.P. & Hall V. 2014. Ash from Changbaishan Millennium eruption recorded in Greenland ice: implications for determining the eruption’s timing and impact. Geophysical Research Letters 41, 694–701, doi: 10.1002/2013GL058642.


Tanaka T.Y. & Chiba M. 2006. A numerical study of the contributions of dust source regions to the global dust budget. Global and Planetary Change 52, 88–104, doi: 10.1016/j.gloplacha.2006.02.002.


Toohey M., Krüger K., Schmidt H., Timmreck C., Sigl M., Stoffel M. & Wilson R. 2019. Disproportionately strong climate forcing from extratropical explosive volcanic eruptions. Nature Geoscience 12, 100–107, doi: 10.1038/s41561-018-0286-2.


Zielinski G.A., Dibb J.E., Yang Q., Mayewski P.A., Whitlow S., Twickler M.S. & Germani M.S. 1997. Assessment of the record of the 1982 El Chichón eruption as preserved in Greenland snow. Journal of Geophysical Research—-Atmospheres 102, D25, 30031–30045, doi: 10.1029/97JD01574.


Zielinski G.A., Mayewski P.A., Meeker L.D., Whitlow S., Twickler M.S., Morrison M., Meese D.A., Gow A.J. & Alley B. 1994. Record of volcanism since 7000 B.C. from GISP2 Greenland ice core and implications for the volcano–climate system. Science 264, 948–952, doi: 10.1126/science.264.5161.948
Published
2020-06-08
How to Cite
Plunkett G., Sigl M., Pilcher J. R., McConnell J. R., Chellman N., Steffensen J., & Büntgen U. (2020). Smoking guns and volcanic ash: the importance of sparse tephras in Greenland ice cores. Polar Research, 39. https://doi.org/10.33265/polar.v39.3511
Section
Research Articles