Ichnodiversity and bathymetric range of microbioerosion traces in polar barnacles of Svalbard
Abstract
This first comprehensive investigation of microbioerosion traces in polar barnacles addresses two bathymetrical transects from the intertidal down to subtidal water depths in two different carbonate factories in the Svalbard Archipelago: the bay Mosselbukta and the ocean bank Bjørnøy-Banken. Scanning electron microscopy of epoxy resin casts of barnacle shells yielded 20 different microendolithic bioerosion traces, probably produced by cyanobacteria (three), chlorophytes (two), rhodophytes (one), sponges (one), foraminifera (three), fungi (nine) and bacteria (one). The lowest ichnodiversity in both locations was observed in the shallow euphotic zone and is likely a result of strong temperature fluctuations, extreme seasonality of light levels and episodic sea-ice cover. At 25–150 m water depth, the ichnodiversity remains relatively constant (9–13 ichnospecies), albeit with differing ichnospecies composition, generally dominated by borings from chlorophytes and fungi. Ichnotaxa at Mosselbukta and Bjørnøy-Banken were similar in numbers but differed in abundance and slightly also in ichnospecies composition. Statistical tests indicate that water depth (affecting the availability of light) is the most significant driver for the development of different microbioerosion trace assemblages across the bathymetrical transects. In contrast, no significant differences in ichnodisparity were found, indicating a comparable suite of architectural designs of the micro-borings throughout bathymetry and location. The comparison of our results with literature data confirms a decrease in ichnodiversity from lower to higher latitudes, although targeted bioerosion analyses from other polar environments are needed to gain a more complete picture of the role of bioerosion in polar carbonate factories.
Downloads
References
Akpan E.B. & Farrow G.E. 1985. Shell bioerosion in high-latitude low-energy environments: firths of Clyde and Lorne, Scotland. Marine Geology 67, 139–150, doi: 10.1016/0025-3227(85)90152-5.
Barnes H. & Barnes M. 1954. The general biology of Balanus balanus (L.) Da Costa. Oikos 5, 63–76.
Barnes H. & Powell H.T. 1953. The growth of Balanus balanoides (L.) and B. crenatus Brug. under varying conditions of submersion. Journal of the Marine Biological Association of the United Kingdom 32, 107–127, doi: 10.1017/S0025315400011450.
Bornet E. & Flahault C. 1889. Sur quelques plantes vivant dans le test calcaire des mollusques. (About some plants living in the calcareous shell of molluscs.) Bulletin de la Societe Botanique de France 36, 147–179, doi: 10.1080/00378941.1889.10835893.
Bromley R.G. 2004. A stratigraphy of marine bioerosion. In D. McIllroy (ed.): The application of ichnology to palaeoenvironmental and stratigraphic analysis. Pp. 455–479. London: Geological Society.
Bromley R.G. & Hanken N.-M. 1981. Shallow marine bioerosion at Vardø, Arctic Norway. Bulletin of the Geological Society of Denmark 29, 103–109.
Bromley R.G., Wisshak M., Glaub I. & Botquelen A. 2007. Ichnotaxonomic review of dendriniform borings attributed to foraminiferans: Semidendrina igen. nov. In W. Miller (ed.): Trace fossils: concepts, problems, prospects. Pp. 518–530. Amsterdam: Elsevier Science.
Bruguière J.G. 1789. Encyclopédie méthodique ou par ordre de matières. Histoire naturelle des vers. (Methodical encyclopedia by order of subject matter. Natural history of worms.) Paris: Panckoucke.
Buatois L.A., Wisshak M., Wilson M.A. & Mángano M.G. 2017. Categories of architectural designs in trace fossils: a measure of ichnodisparity. Earth-Science Reviews 164, 102–181, doi: 10.1016/j.earscirev.2016.08.009.
Färber C., Wisshak M., Pyko I., Bellou N. & Freiwald A. 2015. Effects of water depth, seasonal exposure, and substrate orientation on microbial bioerosion in the Ionian Sea (eastern Mediterranean). PLoS One 10, e0126495, doi: 10.1371/journal.pone.0126495.
Feussner K.-D., Skelton P.A., South G., Alderslade P. & Aalbersberg W. 2004. Ostreobium quekettii (Ostreobiaceae: Chlorophyceae) invading the barnacle Acasta sp. (Pendunculata: Acastinae), endozoic in the octocoral Rumphella suffruticosa (Alcyonacea: Gorgoniidae) from Fiji, South Pacific. New Zealand Journal of Marine and Freshwater Research 38, 87–90, doi: 10.1080/00288330.2004.9517220.
Feyling-Hanssen R.W. 1953. The barnacle Balanus balanoides (Linne, 1766) in Spitsbergen. Norsk Polarinstitutt Skrifter 98. Oslo: Norwegian Polar Institute.
Fischer M.P. 1875. D’un type de sarcodaires. (About a species of protoplasmic organisms.) Journal de Zoologie 4, 530–533.
Freiwald A. & Henrich R. 1994. Reefal coralline algal build-ups within the Arctic Circle: morphology and sedimentary dynamics under extreme environmental seasonality. Sedimentology 41, 963–984.
Garbary D.J. 2001. Biogeography of marine algae. In: Encyclopedia of life sciences. Hoboken, NJ: John Wiley & Sons. Doi: 10.1038/npg.els.0000312.
Glaub I. 1994. Mikrobohrspuren in ausgewählten Ablagerungsräumen des europäischen Jura und der Unterkreide (Klassifikation und Palökologie). (Microboring traces in selected depositional environments of the European Jurassic and Lower Cretaceous [classification and paleoecology].) Frankfurt: Senckenberg Nature Research Society.
Glaub I., Gektidis M. & Vogel K. 2002. Microborings from different North Atlantic shelf areas—variability of the euphotic zone extension and implications for paleodepth reconstructions. Courier Forschungsinstitut Senckenberg 237, 25–37.
Glaub I., Golubic S., Gektidis M., Radtke G. & Vogel K. 2007. Microborings and microbial endoliths: geological implications. In W. Miller (ed.): Trace fossils: concepts, problems, prospects. Pp. 368–381. Amsterdam: Elsevier.
Golubic S., Campbell S.E., Lee S.-J. & Radtke G. 2016. Depth distribution and convergent evolution of microboring organisms. PalZ 90, 315–326, doi: 10.1007/s12542-016-0308-6.
Golubic S., Perkins R.D. & Lukas K.J. 1975. Boring microorganisms and microborings in carbonate substrates. In R.W. Frey (ed.): The study of trace fossils: a synthesis of principles, problems, and procedures in ichnology. Pp. 229–259. Berlin: Springer.
Gómez I., Wulff A., Roleda M.Y., Huovinen P., Karsten U., Quartino M.L., Dunton K. & Wiencke C. 2009. Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Botanica Marina 52, 593–608, doi: 10.1515/BOT.2009.073.
Greenacre M. & Primicerio R. 2013. Multivariate analysis of ecological data. Bilbao: BBVA Foundation.
Hammer Ø. & Harper D.A. 2008. Paleontological data analysis. Oxford: Blackwell Publishing.
Hanken N., Uchman A. & Jakobsen S.L. 2012. Late Pleistocene–early Holocene polychaete borings in NE Spitsbergen and their palaeoecological and climatic implications: an example from the Basissletta area. Boreas 41, 42–55, doi: 10.1111/j.1502-3885.2011.00223.x.
Heimdal B.R. 1989. Arctic ocean phytoplankton. In Y. Herman (ed.): The Arctic seas: climatology, oceanography, geology, and biology. Pp. 193–222. Boston, MA: Springer.
Henrich R., Freiwald A., Bickert T. & Schäfer P. 1997. Evolution of an Arctic open-shelf carbonate platform, Spitsbergen Bank (Barents Sea). In N.P. James & J.A.D. Clarke (eds.): Cool-water carbonates. Pp. 163–181. McLean, VA: SEPM Society for Sedimentary Geology. doi: 10.2110/pec.97.56.0163.
Kjellman F.R. 1883. The algae of the Arctic sea: a survey of the species, together with an exposition of the general characters and the development of the flora. Kongliga Svenska Vetenskaps-Akademiens Handlingar 20. Stockholm: Royal Swedish Academy of Sciences.
Korkmaz S., Goksuluk D. & Zararsiz G. 2014. An R package for assessing multivariate normality. The R Journal 6, 151–162.
Linnaeus C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. (System of nature through the three kingdoms of nature, according to classes, orders, genera and species, with characters, differences, synonyms, places.) Vol. 1. 10th edn. Stockholm: L. Salvii.
Lüning K. 1985. Meeresbotanik: Verbreitung, Ökophysiologie und Nutzung der marinen Makroalgen. (Marine botany: distribution, ecophysiology and usage of the marine macro-algae.) Stuttgart: Thieme.
Luther G. 1987. Seepocken der deutschen Küstengewässer. (Barnacles of the German coastal waters.) Helgoländer Meeresuntersuchungen 41, 1–43, doi: 10.1007/BF02365098.
McMinn A. & Martin A. 2013. Dark survival in a warming world. Proceedings of the Royal Society of London 280, 201–229, doi: 10.1098/rspb.2012.2909.
Müller O.F. 1776. Zoologiæ Danicae Prodromus, seu Animalium Daniæ et Norvegiae indigenarum characteres, nomina, et synonyma imprimis popularium. (Danish history of zoology, or the native characters of Danish and Norwegian animals, names and population synonyms.) Copenhagen: Hallageri.
Neumann A.C. 1966. Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge Cliona lampa. Limnology and Oceanography 11, 92–108, doi: 10.4319/lo.1966.11.1.0092.
NOAA Global Monitoring Laboratory 2020. Sunset table for 2016. NOAA Solar calculator. US National Oceanic and Atmospheric Administration. Accessed on the internet at https://www.esrl.noaa.gov/gmd/grad/solcalc/ on 21 July 2020.
Norwegian Meteorological Institute 2019. Norwegian Ice Service. Accessed on the internet at http://polarview.met.no/ (now https://cryo.met.no/en/latest-ice-charts) on 10 July 2019.
Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., Henry M., Stevens H., Szoecs E. & Wagner H. 2018. Vegan: Community Ecology package. In R package version 2.5-3. Accessible on the internet at https://CRAN.R-project.org/package=vegan.
Quenstedt F.A. 1849. Petrefaktenkunde Deutschlands. Erster Band. Cephalopoden. (Palaeontology of Germany. Vol. 1. Cephalopods.) Tübingen: Fues, Ludwig Friedrich.
Radtke G. 1991. Die mikroendolithischen Spurenfossilien im Alt-Tertiär West-Europas und ihre palökologische Bedeutung. (The microendolithic trace fossils in the Early Tertiary of western Europe and their palaeoecological significance.) Frankfurt: Senckenberg Nature Research Society.
Radtke G., Campbell S.E. & Golubic S. 2016. Conchocelichnus seilacheri igen. et isp. nov., a complex microboring trace of bangialean rhodophytes. Ichnos 23, 228–236, doi: 10.1080/10420940.2016.1199428.
R Core Team 2018. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
Schmidt H. 1992. Mikrobohrspuren ausgewählter Faziesbereiche der tethyalen und germanischen Trias (Beschreibung, Vergleich und bathymetrische Interpretation). (Microboring traces in selected facies areas of the Tethyan and Germanic Triassic [Description, comparison and bathymetric interpretation].) Frankfurt: Frankfurter Geowissenschaftliche Arbeiten.
Schmidt H. & Freiwald A. 1993. Rezente gesteinsbohrende Kleinorganismen des norwegischen Schelfs. (Recent rock boring microorganisms of the Norwegian shelf.) Natur und Museum 123, 149–155.
Schoenrock K., Vad J., Muth A., Pearce D.M., Rea B.R., Schofield J.E. & Kamenos N.A. 2018. Biodiversity of kelp forests and coralline algae habitats in southwestern Greenland. Diversity 10, article no. 117, doi: 10.3390/d10040117.
Teichert S. 2014. Hollow rhodoliths increase Svalbard’s shelf biodiversity. Scientific Reports 4, article no. 6972, doi: 10.1038/srep06972.
Teichert S., Woelkerling W., Rüggeberg A., Wisshak M., Piepenburg D., Meyerhöfer M., Form A. & Freiwald A. 2014. Arctic rhodolith beds and their environmental controls (Spitsbergen, Norway). Facies 60, 15–37, doi:10.1007/s10347-013-0372-2.
Tribollet A., Radtke G. & Golubic S. 2011. Bioerosion. In J. Reitner & V. Thiel (eds.): Encyclopedia of geobiology. Pp. 117–134. Dordrecht: Springer.
Vallon L.H., Rindsberg A.K. & Bromley R.G. 2016. An updated classification of animal behaviour preserved in substrates. Geodinamica Acta 28, 5–20, doi: 10.1080/09853111.2015.1065306.
Viola R., Nyvall P. & Pedersén M. 2001. The unique features of starch metabolism in red algae. Proceedings of the Royal Society B: Biological Sciences 268, 1417–1422, doi: 10.1098/rspb.2001.1644.
Vogel K., Gektidis M., Golubic S., Kiene W.E. & Radtke G. 2000. Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: implications for paleoecological reconstructions. Lethaia 33, 190–204, doi: 10.1080/00241160025100053.
Vogel K. & Glaub I. 2004. 450 Millionen Jahre Beständigkeit in der Evolution endolithischer Mikroorganismen? (450 millions years of persistance in the evolution of endolithic microorganisms?) Stuttgart: Franz Steiner.
Whitaker D. & Christman M. 2014. Clustsig: significant cluster analysis. In R package version 1.1. Accessible on the internet at https://CRAN.R-project.org/package=clustsig.
Wiencke C., Clayton M.N., Gómez I., Iken K., Lüder U.H., Amsler C.D., Karsten U., Hanelt D., Bischof K. & Dunton K. 2006. Life strategy, ecophysiology and ecology of seaweeds in polar waters. Reviews in Environmental Science and Bio/Technology 6, 95–126, doi: 10.1007/s11157-006-9106-z.
Wisshak M. 2006. High-latitude bioerosion: the Kosterfjord experiment. Berlin: Springer.
Wisshak M. 2008. Two new dwarf Entobia ichnospecies in a diverse aphotic ichnocoenosis (Pleistocene/Rhodes, Greece). In M. Wisshak & L. Tapanila (eds.): Current developments in bioerosion. Pp. 213–234. Berlin: Springer.
Wisshak M. 2012. Microbioerosion. In D. Knaust & R. Bromley (eds.): Trace fossils as indicators of sedimentary environments 64. Pp. 213–243. Amsterdam: Elsevier.
Wisshak M. 2017. Taming an ichnotaxonomical Pandora’s box: revision of dendritic and rosetted microborings (ichnofamily: Dendrinidae). European Journal of Taxonomy 390, 1–99, doi: 10.5852/ejt.2017.390.
Wisshak M., Bartholomä A., Beuck L., Büscher J.V., Form A., Freiwald A., Halfar J., Hetzinger S., van Heugten B., Hissmann K., Holler P., Meyer N., Neumann H., Raddatz J., Rüggeberg A., Teichert S. & Wehrmann A. 2017. Habitat characteristics and carbonate cycling of macrophyte-supported polar carbonate factories (Svalbard.) Cruise no. MSM55. June 11—June 29, 2016. Reykjavik (Iceland)—Longyearbyen (Norway). Maria S. Merian-Berichte. Bremen: German Research Foundation, Senate Commission on Oceanography. Doi: 10.2312/cr_msm55.
Wisshak M., Gektidis M., Freiwald A. & Lundälv T. 2005. Bioerosion along a bathymetric gradient in a cold-temperate setting (Kosterfjord, SW Sweden): an experimental study. Facies 51, 93–117, doi: 10.1007/s10347-005-0009-1.
Wisshak M., Meyer N., Radtke G. & Golubic S. 2018. Saccomorpha guttulata: a new marine fungal microbioerosion trace fossil from cool- to cold-water settings. PalZ 92, 525–533, doi: 10.1007/s12542-018-0407-7.
Wisshak M., Neumann H., Rüggeberg A., Büscher J., Linke P. & Raddatz J. 2019. Epibenthos dynamics and environmental fluctuations in two contrasting polar carbonate factories (Mosselbukta and Bjørnøy-Banken, Svalbard). Frontiers in Marine Science 6, article no. 667, doi: 10.3389/fmars.2019.00667.
Wisshak M. & Porter D. 2006. The new ichnogenus Flagrichnus—a paleoenvironmental indicator for cold-water settings? Ichnos 13, 135–145, doi: 10.1080/10420940600851255.
Wisshak M., Tribollet A., Golubic S., Jakobsen J.C. & Freiwald A. 2011. Temperate bioerosion: ichnodiversity and biodiversity from intertidal to bathyal depths (Azores). Geobiology 9, 492–520, doi: 10.1111/j.1472-4669.2011.00299.x.
Woelkerling W.J. 1990. An introduction. In K.M. Cole & R.G. Sheath (eds.): Biology of the red algae. Pp. 1–6. Cambridge: Cambridge University Press.
Wulff A., Iken K., Quartino M.L., Al-Handal A., Wiencke C. & Clayton M.N. 2009. Biodiversity, biogeography and zonation of marine benthic micro- and macroalgae in the Arctic and Antarctic. Botanica marina 52, 491–507, doi: 10.1515/BOT.2009.072.
Zacher K., Rautenberger R., Hanelt D., Wulff A. & Wiencke C. 2009. The abiotic environment of polar marine benthic algae. Botanica Marina 52, 483–490, doi: 10.1515/BOT.2009.082
Zenkevitch L. 1963. Biology of the seas of the U.S.S.R. London: George Allen & Unwin Ltd.
Authors contributing to Polar Research retain copyright of their work, with first publication rights granted to the Norwegian Polar Institute. Read the journal's full Copyright- and Licensing Policy.