Ichnodiversity in the eastern Canadian Arctic in the context of polar microbioerosion patterns

Keywords: Ichnotaxa, trace fossil assemblage, polar environment, Antarctic, ichnocoenoses, barnacles

Abstract

Studies of marine microbioerosion in polar environments are scarce. They include our recent investigations of bioerosion traces preserved in sessile balanid skeletons from the Arctic Svalbard archipelago and the Antarctic Ross Sea. Here, we present results from a third study site, Frobisher Bay, in the eastern Canadian Arctic, together with a synthesis of our current knowledge of polar bioerosion in both hemispheres. Barnacles from 62 to 94 m water depth in Frobisher Bay were prepared using the cast-embedding technique to enable visualization of microboring traces by scanning electron microscopy. In total, six ichnotaxa of traces produced by organotrophic bioeroders were found. All recorded ichnotaxa were also present in Mosselbukta, Svalbard, and most in the Ross Sea. Frobisher Bay contrasts with Mosselbukta in that it is a siliciclastic-dominated environment and shows a lower ichnodiversity, which may be accounted for by the limited bathymetrical range and a high turbidity and sedimentation rate. We evaluate potential key ichnotaxa for the cold-temperate and polar regions, of which the most suitable are Flagrichnus baiulus and Saccomorpha guttulata, and propose adapted index ichnocoenoses for the interpretation of palaeobathymetry accordingly. Together, the three studies allow us to make provisional considerations about the biogeographical distribution of polar microbioerosion traces reflecting the ecophysiological limits of their makers.

Downloads

Download data is not yet available.

References


Adey W. & Hayek L.-A.C. 2011. Elucidating marine biogeography with macrophytes: quantitative analysis of the North Atlantic supports the thermogeographic model and demonstrates a distinct Subarctic region in the northwestern Atlantic. Northeastern Naturalist 18, 1–128, doi: 10.1656/045.018.m801.


Aguirre M.L., Richiano S., Voelker A.H.L., Dettman D.L., Schöne B.R., Panarello H.O., Donato M., Peral L.G., Castro L.E. & Medina R. 2019. Late Quaternary nearshore molluscan patterns from Patagonia: windows to southern southwestern Atlantic–Southern Ocean palaeoclimate and biodiversity changes? Global and Planetary Change 181, article no. 102990, doi: 10.1016/j.gloplacha.2019.102990.


Aitken A.E. & Risk M.J. 1988. Biotic interactions revealed by macroborings in Arctic bivalve molluscs. Lethaia 21, 339–350, doi: 10.1111/j.1502-3931.1988.tb01762.x.


Akpan E.B. & Farrow G.E. 1985. Shell bioerosion in high-latitude low-energy environments: firths of Clyde and Lorne, Scotland. Marine Geology 67, 139–150, doi: 10.1016/0025-3227(85)90152-5.


Alvarado J.J., Grassian B., Cantera-Kintz J.R., Carballo J.L. & Londoño-Cruz E. 2017. Coral reef bioerosion in the eastern tropical Pacific. In P.W. Glynn et al. (eds.): Coral reefs of the eastern tropical Pacific. Pp. 369–403. Dordrecht: Springer.


Amundsen Science Data Collection. CTD data collected by the CCGS Amundsen in the Canadian Arctic. Processed data. Version 3. Doi: AN/ccin12713. Archived online at the Polar Data Calalogue. Accessed on the internet at https://www.polardata.ca/pdcsearch/?doi_id=12713 on 7 July 2021.


Andrews J.T. 1987. Late Quaternary marine sediment accumulation in fiord–shelf–deep-sea transects, Baffin Island to Baffin Bay. Quaternary Science Reviews 6, 231–243, doi: 10.1016/0277-3791(87)90006-0.


Atkinson E.G. & Wacasey J.W. 1987. Sedimentation in Arctic Canada: particulate organic carbon flux to a shallow marine benthic community in Frobisher Bay. Polar Biology 8, 3–7, doi: 10.1007/BF00297157.


Azetsu‐Scott K., Clarke A., Falkner K., Hamilton J., Jones E.P., Lee C., Petrie B., Prinsenberg S., Starr M. & Yeats P. 2010. Calcium carbonate saturation states in the waters of the Canadian Arctic Archipelago and the Labrador Sea. Journal of Geophysical Research—Oceans 115, C11021, doi: 10.1029/2009JC005917.


Azetsu-Scott K., Starr M., Mei Z.-P. & Granskog M. 2014. Low calcium carbonate saturation state in an Arctic inland sea having large and varying fluvial inputs: the Hudson Bay system. Journal of Geophysical Research—Oceans 119, 6210–6220, doi: 10.1002/2014JC009948.


Beuck L. & Freiwald A. 2005. Bioerosion patterns in a deep-water Lophelia pertusa (Scleractinia) thicket (Propeller Mound, northern Porcupine Seabight). In A. Freiwald & J.M. Roberts (eds.): Cold-water corals and ecosystems. Pp. 915–936. Berlin: Springer.


Briggs J.C. & Bowen B.W. 2012. A realignment of marine biogeographic provinces with particular reference to fish distributions. Journal of Biogeography 39, 12–30, doi: 10.1111/j.1365-2699.2011.02613.x.


Bromley R.G. 1994. The palaeoecology of bioerosion. In S.K. Donovan (ed.): The palaeobiology of trace fossils. Pp. 134–54. London: Wiley.


Bromley R.G., Wisshak M., Glaub I. & Botquelen A. 2007. Ichnotaxonomic review of dendriniform borings attributed to foraminiferans: Semidendrina igen. nov. In W. Miller III (ed.): Trace fossils: Concepts, problems, prospects. Pp. 518–530. Amsterdam: Elsevier.


Canadian Hydrographic Service 2018. Canadian hydrographic service non-navigational (NONNA-100) bathymetric data. Fisheries and Oceans Canada: Government of Canada. Accessed on the internet at https://open.canada.ca/data/en/dataset/d3881c4c-650d-4070-bf9b-1e00aabf0a1d#wb-auto-6 on 4 August 2020.


Canadian Ice Service 2009. Canadian ice service arctic regional sea ice charts in SIGRID-3 Format, Version 1. Boulder, CO: NSIDC: National Snow and Ice Data Center. Accessed on the internet at https://nsidc.org/data/G02171/versions/1 on 26 September 2020.


CanVec Series 2017. Geospatial data extraction N.R. Canada. Ottawa, ON, Canada. Accessed on the internet at https://maps.canada.ca/czs/index-en.html on 11 July 2021.


Casadío S., Marenssi S.A. & Santillana S.N. 2001. Endolithic bioerosion traces attributed to boring bryozoans in the Eocene of Antarctica. Ameghiniana 38, 321–329.


Casadío S., Parras A., Griffin M. & Marenssi S. 2007. Borers and encrusters as indicators of the presence of hermit crabs in Antarctic Eocene gastropods shells. Antarctic Science 19, 297–309, doi: 10.1017/S0954102007000533.


Cerrano C., Bavestrello G., Calcinai B., Cattaneo-Vietti R., Chiantore M., Guidetti M. & Sarà A. 2001. Bioerosive processes in Antarctic seas. Polar Biology 24, 790–792, doi: 10.1007/s003000100294.


Chazottes V., Le Campion-Alsumard T. & Peyrot-Clausade M. 1995. Bioerosion rates on coral reefs: interactions between macroborers, microborers and grazers (Moorea, French Polynesia). Palaeogeography, Palaeoclimatology, Palaeoecology 113, 189–198, doi: 10.1016/0031-0182(95)00043-L.


Collins A.K., Hannah C.G. & Greenberg D. 2011. Validation of a high resolution modelling system for tides in the Canadian Arctic Archipelago. Canadian Technical Report of Hydrography and Ocean Sciences 273. Dartmouth, NS, Canada: Bedford Institute of Oceanography.


Deering R., Misiuk B., Bell T., Forbes D.L., Edinger E., Tremblay T., Telka A., Aitken A. & Campbell C. 2018. Characterization of the seabed and postglacial sediments of inner Frobisher Bay, Baffin Island, Nunavut. Summary of Activities 2018, Canada-Nunavut Geoscience Office, 139–152.


Edinger E., Ham L., Aitken A., Barrie J.V., Bell T., Campbell C., Forbes D., Kennedy J., Shirley J., Deering R., Herder E., Middleton G. & Robertson A. 2016. Integrated marine geoscience for environmental impact assessment and sustainable development in Frobisher Bay, Nunavut. Leg 2a field report. CCGS Amundsen. Unpublished.


Edinger E., Ham L., Aitken A., Barrie J.V., Bell T., Campbell C., Forbes D., Kennedy J., Shirley J., de Moura Neves B., Dinn C., Pienkowski A. & Monetro-Serrano J.-C. 2017. Integrated marine geoscience for environmental impact assessment and sustainable development in Frobisher Bay, Nunavut. Leg 2b field report. CCGS Amundsen. Unpublished.


Edinger E., Ham L., Aitken A., Barrie J.V., Bell T., Campbell C., Forbes D., Kennedy J., Shirley J., Tremblay T., Coté D., Wareham-Hayes V., de Moura Neves B. & Hamp M. 2018. Integrated marine geoscience for environmental impact assessment and sustainable development in Frobisher Bay, Nunavut. Leg 2c field report. CCGS Amundsen. Unpublished.


Fabry V.J., McClintock J.B., Mathis J.T. & Grebmeier J.M. 2009. Ocean acidification at high latitudes: the bellwether. Oceanography 22, 160–71, doi: 10.5670/oceanog.2009.105.


Fetterer F., Knowles K., Meier W.N., Savoie M. & Windnagel A.K. 2017. Sea Ice Index, Version 3. NSIDC: National Snow and Ice Data Center. Boulder, CO. Accessed at https://nsidc.org/data/G02135/versions/3 on 10 July 2020.


Feussner K.-D., Skelton P.A., South G., Alderslade P. & Aalbersberg W. 2004. Ostreobium quekettii (Ostreobiaceae: Chlorophyceae) invading the barnacle Acasta sp. (Pendunculata: Acastinae), endozoic in the octocoral Rumphella suffruticosa (Alcyonacea: Gorgoniidae) from Fiji, South Pacific. New Zealand Journal of Marine and Freshwater Research 38, 87–90, doi: 10.1080/00288330.2004.9517220.


Fischer M.P. 1875. D’un type de sarcodaires. (About a species of protoplasmic organisms.) Journal de Zoologie 4, 530–533.


Försterra G., Beuck L., Häussermann V. & Freiwald A. 2005. Shallow-water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocoenoses, the bioeroding community, heterotrophic interactions and (paleo)-bathymetric implications. In A. Freiwald & J.M. Roberts (eds.): Cold-water corals and ecosystems. Pp. 937–977. Berlin: Springer.


Glaub I. 1994. Mikrobohrspuren in ausgewählten Ablagerungsräumen des europäischen Jura und der Unterkreide (Klassifikation und Palökologie). (Microboring traces in selected European Jurassic and Lower Cretaceous deposits [classification and palaecology].) Frankfurt am Main: Senckenberg Nature Research Society.


Glaub I., Gektidis M. & Vogel K. 2002. Microborings from different North Atlantic shelf areas—variability of the euphotic zone extension and implications for paleodepth reconstructions. Courier Forschungsinstitut Senckenberg 237, 25–37.


Glynn P.W. & Manzello D.P. 2015. Bioerosion and coral reef growth: a dynamic balance. In C. Birkeland (ed.): Coral reefs in the Anthropocene. Pp. 67–97. Dordrecht: Springer.


Golubic S., Perkins R.D. & Lukas K.J. 1975. Boring microorganisms and microborings in carbonate substrates. In R.W. Frey (ed.): The study of trace fossils: a synthesis of principles, problems, and procedures in ichnology. Pp. 229–259. Berlin, Heidelberg: Springer.


Golubic S., Radtke G., Campbell S.E., Lee S.-J., Vogel K. & Wisshak M. 2014. The complex fungal microboring trace Saccomorpha stereodiktyon isp. nov. reveals growth strategy of its maker. Ichnos 21, 100–110, doi: 10.1080/10420940.2014.888301.


Grainger E.H. 1979. Primary production in Frobisher Bay, Arctic Canada. In M.J. Dunbar (ed.): Marine production mechanisms. Pp. 9–30. Cambridge: Cambridge University Press.


Grainger E.H., Mohammed A.A. & Lovrity J.E. 1985. The sea ice fauna of Frobisher Bay, Arctic Canada. Arctic 38, 23–30, doi: 10.14430/arctic2103.


Hanken N., Uchman A. & Jakobsen S.L. 2012. Late Pleistocene–early Holocene polychaete borings in NE Spitsbergen and their palaeoecological and climatic implications: an example from the Basissletta area. Boreas 41, 42–55, doi: 10.1111/j.1502-3885.2011.00223.x.


Hauck J., Gerdes D., Hillenbrand C.-D., Hoppema M., Kuhn G., Nehrke G., Völker C. & Wolf-Gladrow D.A. 2012. Distribution and mineralogy of carbonate sediments on Antarctic shelves. Journal of Marine Systems 90, 77–87, doi: 10.1016/j.jmarsys.2011.09.005.


Herder E.C., Aitken A. & Edinger E. 2021. Temporal change in molluscan assemblages (bivalves and gastropods) of Frobisher Bay, Nunavut, Canada, over fifty years. Arctic Science, doi: 10.1139/AS-2020-0037.


Hsiao S.I.C. 1992. Dynamics of ice algae and phytoplankton in Frobisher Bay. Polar Biology 12, 645–651, doi: 10.1007/BF00236987.


James N.P. & Lukasik J. 2010. Cool- and cold-water neritic carbonates. In N.P. James & R.W. Dalrymple (eds.): Facies models 4. Pp. 371–399. St. John’s, Newfoundland, Canada: Geological Association of Canada.


Kiene W.E. & Hutchings P.A. 1992. Long-term bioerosion of experimental coral substrates from Lizard Island, Great Barrier Reef. In R.H. Richmond (ed.): Proceedings of the 7th International Coral Reef Symposium. Vol. 1. Pp. 397–403. UOG Station, Guam: University of Guam Press.


Kiene W.E., Radtke G., Gektidis M., Golubic S. & Vogel K. 1995. Factors controlling the distribution of microborers in Bahamian reef environments. Facies 32, 176–188, doi: 10.1007/BF02536867


Landvik J.Y., Bondebik S., Elyerhoi A., Fjeldskaar W., Mangerud J., Siegert S., Salvigsen O., Svendsen J.-I. & Vorren T.O. 1998. The Last Glacial Maximum of Svalbard and the Barents Sea area: ice sheet extent and configuration. Quaternary Science Reviews 17, 43–76, doi: 10.1016/S0277-3791(97)00066-8.


Le Campion-Alsumard T., Golubic S. & Hutchings P. 1995. Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Marine Ecology Progress Series 117, 149–157, doi: 10.3354/meps117149.


Lewis E. & Wallace D. 1998. Program developed for CO2 system calculations. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy.


Linnaeus C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. (System of nature through the three kingdoms of nature, according to classes, orders, genera and species, with characters, differences, synonyms, places.) Vol. 1. 10th edn. Stockholm: L. Salvii.


Malumián N., López Cabrera M.I., Náñez C. & Olivero E.B. 2006. Bioerosion patterns in Cretaceous–Cenozoic benthic foraminiferal tests from Patagonia and Tierra del Fuego Island, Argentina. SEPM Special Publication 88, 299–306, doi: 10.2110/pec.07.88.0301.


McCann S.B. & Dale J.E. 1986. Sea ice breakup and tidal flat processes, Frobisher Bay, Baffin Island. Physical Geography 7, 168–180, doi: 10.1080/02723646.1986.10642289.


Meyer N. 2020. Polar microbioerosion patterns exemplified in Arctic and Antarctic barnacles. Dissertation, University of Bremen. Doi: 10.26092/elib/433.


Meyer N., Wisshak M. & Freiwald A. 2020. Ichnodiversity and bathymetric range of microbioerosion traces in polar barnacles of Svalbard. Polar Research 39, article no. 3766, doi: 10.33265/polar.v39.3766.


Meyer N., Wisshak M. & Freiwald A. 2021. Bioerosion ichnodiversity in barnacles from the Ross Sea, Antarctica. Polar Biology 44, 667–682, doi: 10.1007/s00300-021-02825-4,


Misiuk B., Diesing M., Aitken A., Brown C.J., Edinger E.N. & Bell T. 2019. A spatially explicit comparison of quantitative and categorical modelling approaches for mapping seabed sediments using random forest. Geosciences 9, article no. 254, doi: 10.3390/geosciences9060254.


Nelson C.S., Keane S.L. & Head P.S. 1988. Non-tropical carbonate deposits on the modern New Zealand shelf. Sedimentary Geology 60, 71–94, article no. 254, doi: 10.1016/0037-0738(88)90111-X.


Physical Science Laboratory 2020. NOAA high resolution SST data. Boulder, CO: NOAA/OAR/ESRL PSL. Accessed on the internet at https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html#detail on 2 September 2020.


Punshon S., Azetsu-Scott K., Sherwood O. & Edinger E.N. 2019. Bottom water methane sources along the high latitude eastern Canadian continental shelf and their effects on the marine carbonate system. Marine Chemistry 212, 82–95, doi: 10.1016/j.marchem.2019.04.004.


Radtke G. 1991. Die mikroendolithischen Spurenfossilien im Alt-Tertiär West-Europas und ihre palökologische Bedeutung. (The microendolithic trace fossils in the Early Tertiary of western Europe and their palaeoecological significance.) Frankfurt am Main: Senckenberg Nature Research Society.


Radtke G., Hofmann K. & Golubic S. 1997. A bibliographic overview of micro-and macroscopic bioerosion. Courier Forschungsinstitut Senckenberg 201, 307–340.


Richiano S., Aguirre M., Castellanos I., Davies K. & Farinati E. 2017. Do coastal fronts influence bioerosion patterns along Patagonia? Late Quaternary ichnological tools from Golfo San Jorge. Journal of Marine Systems 176, 38–53, doi: 10.1016/j.jmarsys.2017.07.010.


Schlager W. 2000. Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate systems. In E. Insalaco et al. (eds.): Carbonate platform systems: components and interactions. Pp. 217–227. London: Geological Society, Special Publications.


Schlitzer R. 2021. Ocean Data View. Software downloaded on the internet at http://odv.awi.de in 2018.


Schmidt H. & Freiwald A. 1993. Rezente gesteinsbohrende Kleinorganismen des norwegischen Schelfs. (Recent rock-boring microorganisms of the Norwegian shelf.) Natur und Museum 123, 149–155.


Schönberg C.H.L., Fang J.K.H., Carreiro-Silva M., Tribollet A. & Wisshak M. 2017. Bioerosion: the other ocean acidification problem. ICES Journal of Marine Science 74, 895–925, doi: 10.1093/icesjms/fsw254.


Scoffin T.P., Alexandersson E.T., Bowes G.E., Clokie J.J., Farrow G.E. & Milliman J.D. 1980. Recent, temperate, subphotic, carbonate sedimentation; Rockall Bank, Northeast Atlantic. Journal of Sedimentary Research 50, 331–355, doi: 10.1306/212F7A04-2B24-11D7-8648000102C1865D.


Thomson ISI Web of Knowledge 2020. Accessed on the internet at www.webofknowledge.com on 19 August 2020.


Todd B.J., Shaw J., Campbell D.C. & Mate D.J. 2016. Preliminary interpretation of the marine geology of Frobisher Bay, Baffin Island, Nunavut. Summary of Activities 2016, Canada–Nunavut Geoscience Office, 61–66.


Tribollet A. & Golubic S. 2005. Cross-shelf differences in the pattern and pace of bioerosion of experimental carbonate substrates exposed for 3 years on the northern Great Barrier Reef, Australia. Coral Reefs 24, 422–434, doi: 10.1007/s00338-005-0003-7.


Vogel K., Bundschuh M., Glaub I., Hofmann K., Radtke G. & Schmidt H. 1995. Hard substrate ichnocoenoses and their relations to light intensity and marine bathymetry. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 1–3, 49–61, doi: 10.1127/njgpa/195/1995/49.


Vogel K., Gektidis M., Golubic S., Kiene W.E. & Radtke G. 2000. Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: Implications for paleoecological reconstructions. Lethaia 33, 190–204, doi: 10.1080/00241160025100053.


Wisshak M. 2006. High-latitude bioerosion: the Kosterfjord experiment. Lecture Notes in Earth Sciences 109. Berlin: Springer.


Wisshak M. 2012. Microbioerosion. In D. Knaust & R.G. Bromley (eds.): Trace fossils as indicators of sedimentary environments. Pp. 213–243. Amsterdam: Elsevier.


Wisshak M., Gektidis M., Freiwald A. & Lundälv T. 2005. Bioerosion along a bathymetric gradient in a cold-temperate setting (Kosterfjord, SW Sweden): an experimental study. Facies 51, 93–117, doi: 10.1007/s10347-005-0009-1.


Wisshak M., Knaust D. & Bertling M. 2019. Bioerosion ichnotaxa: review and annotated list. Facies 65, article no. 24, doi: 10.1007/s10347-019-0561-8.


Wisshak M., Meyer N., Kuklinski P., Rüggeberg A. & Freiwald A. 2021. ‘Ten years after’—a long-term settlement and bioerosion experiment in an Arctic rhodolith bed (Mosselbukta, Svalbard). Geobiology 20, 112–136, doi: 10.1111/gbi.12469.


Wisshak M., Meyer N., Radtke G. & Golubic S. 2018. Saccomorpha guttulata: a new marine fungal microbioerosion trace fossil from cool- to cold-water settings. PalZ 92, 525–533, doi: 10.1007/s12542-018-0407-7.


Wisshak M., Neumann H., Rüggeberg A., Büscher J., Linke P. & Raddatz J. 2019. Epibenthos dynamics and environmental fluctuations in two contrasting polar carbonate factories (Mosselbukta and Bjørnøy-Banken, Svalbard). Frontiers in Marine Science 6, article 667, doi: 10.3389/fmars.2019.00667.


Wisshak M. & Porter D. 2006. The new ichnogenus Flagrichnus—a paleoenvironmental indicator for cold-water settings? Ichnos 13, 135–145, doi: 10.1080/10420940600851255.


Wisshak M., Tribollet A., Golubic S., Jakobsen J.C. & Freiwald A. 2011. Temperate bioerosion: ichnodiversity and biodiversity from intertidal to bathyal depths (Azores). Geobiology 9, 492–520, doi: 10.1111/j.1472-4669.2011.00299.x.


Young H.R. & Nelson C.S. 1988. Endolithic biodegradation of cool-water skeletal carbonates on Scott shelf, northwestern Vancouver Island, Canada. Sedimentary Geology 60, 251–267, doi: 10.1016/0037-0738(88)90123-6.


Zammit K. 2017. Gone, but not forgotten: composition of coldwater carbonate bioclasts in Frobisher Bay, Nunavut. Memorial University Bachelor thesis, Newfoundland, Canada.
Published
2022-04-29
How to Cite
Meyer N., Wisshak M., Edinger E. N., Azetsu-Scott K., & Freiwald A. (2022). Ichnodiversity in the eastern Canadian Arctic in the context of polar microbioerosion patterns. Polar Research, 41. https://doi.org/10.33265/polar.v41.8083
Section
Research Articles

Most read articles by the same author(s)